

Preface to the 1998 edition.

Hi, and welcome to the on-line version of this book, first published in 1984 by McGraw Hill. |
scanned thisin during Summer 1998, using an OCR tool, combined with gif images for the program
listing. | partially did this as a gift to the surviving Oric community, and also as an archiving exercise.
| was fairly proud of this book, somewhat displeased when it was published to find it in no bookstores
at al. Although it is hardly relevant today, it surely had some worth back when Oric was agoing
concern. Anyway, that’s all water under the bridge.

My scanning skills improved somewhat during the making of this book, so you will find the later
listings are sharper, bolder. In case you are interested, my trick was to use Paint shop pro: convert to
large colour mode, at full size; then use Erode filter, which blackens the text; optionally do a flood fill
of white; resize to about 340 across; use the sharpen more filter to highlight some of the edges; and
finally reduce colours to 8 to make the image more compact. The OCR software was Cunieform. The
old version | had of that wasterrible with # signs, but | upgraded the version, and the newer one
seemed to like them. There might be an odd escaped O - O problem.

Originally the book was written on aMicrotan and saved onto cassette tapes. Now, those tapes contain
music....

I’m hoping that much of the book remains useful to Oric users out there, emulated or real, the book has
been scanned in almost without change - afew grammatical changes, for instance the changing of
“data’ to singular - the proof reader at Mc Graw Hill was convinced that “ data” was a plural term [ok
technically it isthe plural of Datum, but no-onein their right mind uses this] So sentences like “The
dataisread” should be“The dataareread” - the latter sounds horrible, to my mind “data” is aword
that is always singular, like “grass’. So where I’ ve noticed this, | changed it back to how | originally
typed it! I’ve put all the listings in as images, thismeans | can’t introduce errors, since the listings
have all come indirectly from those original programs dumped out from arunning Oric. None of my
code was written using an assembler, just the in-line one from Oric Mon. | do apologise for this, it
seemed quite natural at thetime, | don’t think 1’ d have the patience now to work in this kind of manner,
without proper cross assemblers! | can’t vouch at thistime if the programs are all working.

A lot has happened in the 14 or so years since the book was written. Therise of the PC, the
commercialising of software, Windows, the rebirth of consoles. We ve seen computers go from
containing 16K of ram to typically 64 megs (4000 times), storage from 100K on floppy to 6 gigs on
hard drive (60,000 times), processor power going from lessthan 1 MHz at 8 bit to 400 Mhz at 32 bit.

Personally, | stayed in the gamesindustry for ailmost 10 years, doing conversions, and to be frank
struggling towards the end to make aliving out of it. Now, I’'m not doing games, but working with
new technology, associated with CDs, the Internet, video, and audio. | remain at heart an assembler
man, but I’m learning C++ and windows, to keep up with the world.

If you want to reach me, I’'m at binky@DeathsDoor.com, on ICQ at 104950, and have a home page
which islinked via come.to/geffers. Email is aways welcome.

I’m releasing this book as freeware, and can be quoted from, or printed as desired. If included as part of
some piece of work, then please acknowledge its origin.

PREFACE

This book isfor Atmos and Oric 1 users who want detailed information about their computer.
For machine code programmers, an account of the various ROM cals is given with a full
description of the methods of handling the different parts of the machine.

This book was not written to teach machine code, but to provide enough background
information for existing 6502 programmers to use an Oric/Atmos.

If you are not an experienced machine code programmer, you will still find a great number
of hints and tips in the book. Even if you do not understand machine code at all you will still
be able to use the numerous utilities — such as Renumber, Merge and Auto.

Chapter one summarizes the hardware that makes up an Oric or Atmos
compulter.

Chapter two explains how BASIC works, from the way that programs and variables are
stored, to creating different windows of scrolling text. A list of Oric 1 and Atmos bugs
concludes the chapter.

Chapter three is about how machine code programs are entered, methods of calling your
program, and how a machine code program can use the software timers. Some machine code
pitfalls and tips are given at the end of the chapter, along with areal-time clock program.

Chapter four describes two important sections of Oric 1 or Atmos — the keyboard and the
cassette system.

This chapter describes how individual keypresses are detected — very useful for games
where severa keys are used at the same time. A complete account of the cassette system is
given, and after reading this chapter you will be able to write machine code programs that
save and load blocks of memory, or individual bytes. A verify program is listed for Oric 1
owners.

Chapter five gives an account of how BASIC uses RAM and ROM. All important ROM and
RAM addresses are printed, plus details of how the stack areais used.

Chapter six explores three important subjects — maths, HIRES and music. On the maths side,
a machine code programmer will now be able to use the ROM’s floating point routines. On
the HIRES side, you will find out how the high-resolution graphics can be used with different
mixtures of text, and a complete account of the ROM routines for CURSET, DRAW etc. is
given.

On the music side, this chapter describes how the ROM routines for MUSIC, PLAY and
SOUND are used, as well as giving details of how the sound chip is accessed.

Chapter seven presents a number of fast high-resolution graphics routines. A single-point
plotter is given which runs about 70 times faster than BASIC's CURSET command. A
PAINT routine islisted that will fill in any shape on the high-resolution screen.

Chapter eight gives six utility programs to help BASIC programmers. These are: Renumber,
Delete, Merge, Auto-Data, Trace, and ON-ERROR. Other utilities can be found throughout
the book.

Chapter nine completes the book with some ambitious ideas, including a primitive form of
speech synthesis, a multiprocessor and a program that alows single key entry of BASIC
keywords.

Geoff Phillips

CONTENTS

Page numbers are not given, because are irrelevant to the on-line version.

Preface
Chapter 1 Looking insidetheOric

1.1 Introduction

1.2 The ROM

1.3 Useof RAM

1.4 Differences between machines
1.5 The microprocessor — 6502
1.6 The 6522 — VIA

1.7 The 8912 sound chip

1.8 Text screen

1.9 High-resolution mode

1.10 Keyboard

1.11 Printer interface

1.12 Cassette system

Chapter 2BASIC

2.1 Introduction

2.2 Memory map of BASIC
2.3 Theformat of a program
2.4 Pointers

2.5 Numeric variables

2.6 Integer variables

2.7 String variables

2.8 Arrays

2.9 READ and DATA

2.10 Using RND

2.11 Using a printer

2.12 The Oric's status bytes
2.13 INVERSE and NORMAL
2.14 Creating windows of text
2.15 Controlling PRINT

2.16 Bugsin BASIC

Chapter 3 Using machine code
3.1 Advantages of machine code
3.2 Storing machine code
3.3 Types of machine code program
3.4 Creating a machine code program
3.5 Calling a machine code routine
3.6 Passing information to machine code routines
3.7 Patching into BASIC
3.8 Interrupts
3.9 Software timers
3.10 Machine code advice
3.11 Using the ! extension command
3.12 Using the & extension function routine
3.13 A real-time clock
3.14 Relocater program

Chapter 4 The keyboard and cassette system

Keyboard

Cassette input/output

Saving an area of memory
Loading an area of memory

A verify facility for version 1.0
CLOAD with an exit

Data saving and loading
Conclusions

Chapter 5 The Oric ROM in detail

GUTAUTWU NG R O

Introduction

Use of page O memory

Use of page 1

Use of page 2

Summary of ROM addresses

Chapter 6 Maths, HIRES, and music

rOWONODORF O

Introduction

Maths

High-resolution graphics
Sound and music

Chapter 7 Faster high-resolution graphics

7.1
7.2
7.3
7.4
7.6
1.7
7.8
7.9

Objectives

The theory behind the fast plotting routines
Collisions

Fast single-point plotter

Drawing larger shapes

Examples

PAINT subroutine

High-resolution compactor subroutine

7.10 Conclusions

Chapter 8 Useful utilities

8.1
8.2
8.3
8.4
8.5
8.6

Introduction

Renumber routine
Delete utility

Merge program facility
AUTO DATA feature
Trace utility

8.7

On-error GOTO feature

Chapter 9 Stretching the Oric toitslimits

9.1
9.2
9.3
94
9.5
9.6

Introduction

Speech synthesis program
Extra 6502 op-codes
Multitasking in BASIC
Single-key facility
Silence routine

144
144
148
149
153
157

1 LOOKING INSIDE THE ORIC

1.1 Introduction

In this chapter we shall look at the various components of the Oric. Some of the features
discussed will be further explored later in this book — the workings of the cassette system, for
example.

1.2 TheROM

The Read Only Memory device contained in each Oric is responsible for supplying the
BASIC interpreter program. It contains some 16K of instructions located between #C000 and
#FFFF (on all machines). Since a program cannot overwrite the ROM area, the area #C000 to
#FFFF is not affected by any write operations.

1.3 Useof RAM

Any BASIC program that you write is stored in the Random Access Memory located between
0 and #BFFF (or up to #3FFF for 16K users).

However, since the ROM needs a certain amount of working space, and because of other
considerations, any BASIC program that you write will start at #501. The top of usable
memory for your BASIC program is also going to be reduced, to at least as low as #B3FF, or
#33FF for 16K machines.

If you are using high-resolution mode and have not issued a GRAB command, then the top
of BASIC memory becomes #97FF (#17FF for 16K machines). This means that you have lost
more than 11K! The actual layout and use of the RAM is described in more detail in Chapter
5.

1.4 Differ ences between machines

From the point of view of hardware, there are very few differences between machines.
There are two major categories:

1. Your Oriciseither a 16K or a 48K machine.
2. Your Oriciseither version 1.0 (i.e, the ORIC-1) or 1.1 (i.e, the
ORIC ATMOS).

When you first power up your Oric, you will be advised of which version you are running.
Chapter 2 lists the differences between the ROMs, but there is no apparent difference when
looking at the hardware. Take note of your version number, so that you know which addresses
apply to your particular machine.

Theterms '16K machine’ and '48K machine’ relate to the total memory capacity. On a 16K
machine, there would seem to be a gap between the end of the RAM (#3FFF) and the start of
ROM (#C000). In practice, this is not the case, as the 16K of RAM is mirrored through each
16K block of addresses; e.g., location O is the same as locations #4000 and #8000. Thisis the
reason why a program can still write to the screen at #BB80 on a 16K machine. Do not worry
that this feature is ‘accidental’ and might not be true for all ORICs — the start-up routines use
the mirroring to detect which machine is which.

Some very early machines have dlightly different insides, but the only important difference
is that the sound on these machines is much louder and can cause the break-up of a TV
picture.

In this book, version 1.0 addresses are given first, followed by the version 1.1 address in
brackets.

1.5 The microprocessor — 6502

The 6502 is the heart of the computer, obeying instructions held in ROM or RAM. When
writing BASIC programs, the function of the 6502 is entirely invisible, but if you are going to
write machine code programs, you will need to know quite a lot about this device. It is
certainly worth while buying a book devoted to the subject. The programs in this book will
help you to understand some aspects of machine code programming, and part of Chapter 3
gives afew guidelines on the use of some 6502 instructions.

1.6 The6522 - VIA

The Versdtile Interface Adaptor (VIA) is a microchip that belongs to the same family as the
6502 processor (hence the similar number). It is a complicated, but invaluable, device which
links the Oric’s 6502 to its peripherals, as well as providing two timers.

A book devoted to the 6502 will often have a chapter on the usage of the 6522; here we are
only concerned with its use in connection with the Oric.

TALKING TO THE VIA

The 6522 chip is linked to page 3 of your memory map, so that whenever you read or write to
an address between #300 and #30F you are enabling the VIA. These 16 addresses are
normally mirrored throughout page 3 — so #380 is the same as #300 — but there is no reason to
use any location between #310 and #3FF.

A quick summary of these locations follows; for more information you will need to use a
book on the 6502 family of chips.

Address Description

#300 Port B in and out

#301 Port A in and out

#302 Define port B output or input (output if bits set)

#303 Define port A output or input

#304,5 Timer-1 counter

#306,7 Timer-1 latch

#308,9 Timer-2 counter/latch

#30A Shift register (not used by ORIC)

#30B Auxiliary control register

@30C Periphera control register

#30D Interrupt flag register

#30E Interrupt enable register (indicates what sort of event will cause an
interrupt).

#30F Read/write to port A without handshake.

CONTROL LINES ON THE 6522

The two ports can each contain one byte of information, but each bit can be separately set as
input or output. In addition to the ports, there are four control lines, called CA1, CA2, CB1,
and CB2. Hereis a summary of how the Oric uses al of the /O lines:

Port A — connects to the printer’s 8-bit bus. It is also wired into the 8912
sound chip.

Port B — this port is easier to look at bit by bit. Starting from the right, the
lowest three bits are used to supply the row when looking at the keyboard
(see Sec. 1.10).

Bit 3 of port B isset to 1 when a key is pressed — more on this later.

Bit 4 is connected to the strobe line on the printer socket — when 0 the
printer will expect data to be present on port A.

Bit 6 controls the relay circuit on the cassette socket.

Bit 7 connects to the cassette output circuitry.

CA1 —thislineisinput from the acknowledge signal on the printer port.

CA2 —thisline connects to the 8912 sound chip (see Sec. 1.7).

CB1 —thislineis connected to the cassette input circuitry. CB2 —

when 1 the 8912 reads from port A of the 6522.

THE 6522 TIMERS

It is not often realized that the Oric has two versatile timers at its disposal. Later in this book
it will be shown how easy it is to use these timers to provide a real-time clock facility —in
BASIC or machine code.

The most important timer is designated timer-1 and is used mainly to count time between
each interrupt. Without any supervision from the 6502, timer-1 counts down from a given 16-
bit value (at location #306,7) to zero — this counter can be read from addresses #304,5.

When zero isreached, timer-1 starts counting again, using the 16-bit value stored at #306,7,
and bit 6 in the interrupt flag register is set. When this happens, the 6522 will cause an
interrupt signal to be sent to the 6502 processor. If the 6502 has interrupts enabled, then the
appropriate interrupt handling subroutine will be called. It is very important to realize that the
timer will operate regardless of the state of the 6502 — disabling interrupts does not stop the
clock.

During cassette saving and loading, the VIA is set up differently, and the timers operate in
adifferent fashion:

Timer-2, which isidle at other times, is used when receiving bits from the cassette input port
in order to wait an exact amount of time.

The function of timer-1 is altered (by setting bits 6 and 7 of the auxiliary control register) so
that instead of causing an interrupt bit 7 of port B istoggled and the timer is automatically
Set running again.

When a cassette operation is complete, the registers in the 6522 are set back to their initial
valuesin order for the keyboard and printer to work normally.

1.7 The 8912 sound chip

All sound effects produced on the Oric are performed by the 8912 sound chip. In addition to
being able to generate music, this device has one input/output port — port A —which is used to
output the column number when polling the keyboard.

The 8912 is controlled by 15 eight-bit registers stored inside the chip. These are set up
whenever the Oric’s sound commands are executed. Here is a summary of how each register
is used:

Regi ste |Use

r The lowest 12 bits give the pitch of channel A

0,1 The lowest 12 bits give the pitch of channel B

2,3 The lowest 12 bits give the pitch of channel C

4,5 The lowest 5 bits give the pitch of the noise channel
6 Enables: each bit has a different meaning:

U Bit 6: set port A as output or input

Bits 3,4,5: mix noise with channels A, B, and C

8 Bits 0,1,2: enable channels A, B, and C

Channel A amplitude. If bit 4 is set then the music
91011,12 fenvelope isused; otherwise bits O to 3 give the fixed
13 volume

Channel B as above

Channel C as above

Length of the envelope

The lowest four bits give the shape of the envelope. This
is different from the value you would usein the PLAY
command, according to the following table:

PLAY value Actua register value

1 0,1,2,3,0r9

4,5,6,7, or 15

2
3 8
4 10or 14

5 11

14 6 12
713
Register 14 isthe /0 port A.

The 8912 registers cannot be accessed directly by the 6502 — but instead via port A of the
6522 and a couple of control lines.

CB2 or the 6522 is set in order to select the 8912, and then immediately cleared (the 8912
chip will accept data as fast as you send it).

CA2 of the 6522 is either set when a register number is being passed in port A or cleared if
it isdata for the register. So in order to write #F7 to register 1, you would:

1. Store 1 in #30F — port A without any handshake signals.
2. Set CA2 and CB2.

3. Immediately clear CB2.

4. Put #F7 in #30F.

5. Clear CA2 and set CB2.

6. Immediately clear CB2.

There is a subroutine in the ROM to handle the above procedure — see Chapter 6 but asthisis
unbelievably inefficient, you will find a faster version used in the speech synthesis program of
Chapter 9 (see 9.2).

1.8 Text screen

The text screen is organized as 28 rows by 40 columns of character cells. Each character cell
occupies one byte of memory between #BB80 and #BFDF, but creates a display of a character
6 pixelswide by 8 pixels down.

The information for each character is retrieved by the graphics chip depending on the
ASCII value of that character. Eight consecutive bytes are used for each ASCII character —
one for each line of pixels. The formula for the start address of the definition of a particular
character is: character value * 8 + start of character set.

The start of the character set (in TEXT mode) is #B400 for the standard character set (A to
Z,01t09, etc.) and #B800 for the alternate character set. Since these are in an area of RAM, it
is quite a Ssmple matter to redefine any character.

ATTRIBUTES

If the screen memory contains a control value, i.e., an ASCII vaue between 0 and 31, then
this value is taken as an attribute, and the character set is not referenced. This means that the
first 256 bytes of both the standard and alternate character sets is wasted. Also, you may have
noticed that the alternate character set overlaps with the screen!

An attribute changes the way that a particular line is interpreted by the VDU chip.
Appendix C of the Oric manual (or Appendix 2 of the Atmos manual) gives the 32 possible
attribute values. Some attributes — those between 8 and 15 — affect three different features of a
line— double height, flashing, and character set.

At the beginning of each line, five attributes are always assumed:

1. No flashing.

2. Standard character set.
3. Paper of 0 (black).

4. Ink of 7 (white).

5. Single height.

If the character being displayed has a value between 128 and 255, then the character will be
used as though 128 had been subtracted — except that whatever colours would have been
displayed become inverted.

For instance, if you POKE #BB80 with 65 —i.e., the letter A —you will get awhite A ona
black background. If you POKE 65+128 instead, then the colours change — white (7)
becomes 0 (7 — 7) and black (0) becomes white (7 — 0). This rule also works when you are
setting a paper attribute: POKE #BB80,17 leaves a red sguare at the top left of the screen,
whereas POKE #BB80,17+128 — although correctly setting the paper colour to red — creates
asguare whichiscyan (7 —1).

USING ESCAPE

One source of confusion lies when looking at how PRINT uses ESC (CHR$(27)) in order to
set attributes. It is a good idea to totaly ignore what the manua tells you about using
ESCAPE when writing in machine code.

The important fact is that ESCAPE only works because BASIC is creating all the
attributes for you — POKE 27 onto the text screen and nothing will happen. (Try poking it
onto the high-resolution screen!)

The use of ESCAPE when using PRINT is unavoidable because this command traps any
ASCII value less than 32 and treats them like control characters (changing parameters like
keyclick, etc.).

The PLOT command, like POKE, does not understand escape sequences,
so direct attributes must be used.

1.9 High-resolution mode

High-resolution mode moves away from using a character set, and instead causes the screen
to directly reflect the contents of the video memory.

Each byte in the area #A 000 to #BF3F affects 6 horizontal pixelsin a matrix 240 across by
200 down. Part of the text screen remains at the bottom, at addresses #BF68 to #BFDF,
although in high-resolution mode, these three lines use the character sets at #9800 to #9FFF.

This is necessary as the high-resolution screen overwrites the normal character set area.
The exact details of how BASIC enters into high-resolution mode can be found in Chapter 6.

From a hardware point of view, the graphics chip switches modes when an attribute of 30
or 31 isinterpreted. When an attribute of 26 or 27 is encountered, the mode is switched back
to text. All the copying of character sets, etc., is carried out by software.

1.10 Keyboard

The keyboard on the Oric is a matrix of 8 columns connecting to 8 rows. By writing down
one column and along one row, it is possible to examine the state of an individual key.

After every three interrupts, the system scans all the columns and rows in an attempt to find
any depressed keys. The ROM subroutine only looks for one key down at a time, except that
it does one extra search for the SHIFT and CONTROL keys. There is no reason, however,
why a program cannot look at every key individually —thisis very useful for games.

Two ports are used to poll the keyboard — port B of the 6522 and port A of the 8912.

The column is output on port A of the 8912 in the form of one bit cleared in a byte
containing #FF. The row is output as a number (0 —7) on port B of the 6522 and bit 3 of port
B read back to determine whether that key is pressed.

Chapter 4 gives further details about reading from the keyboard.

1.11 Printer interface
When a byte is sent to the printer, the following occurs:

1. The byte is sent along port A of the 6522.

2. Bit 4 of port B is cleared and then set (this is the printer’s strobe line).

3. The Oric waits until CA1 is pulsed by the acknowledge line on the printer.
CAlisnot read directly, but causes bit 1 of the interrupt flag register to be
set inside the 6522.

1.12 Cassette system

Chapter 4 explains how your programs can use the cassette system to save and load data, so
this section is only concerned with some of the hardware aspects.

CASSETTE OUTPUT

The cassette output circuitry can only handle one bit at atime, creating either a high tone or a
low tone depending on bit 7 of the 6522 s port B.

This bit is set or reset automatically by the 6522 after timer-1 has finished counting down;
the length of time to be counted depends on both the tape speed and whether the bit isO or 1.
In order to save a whole byte, the cassette routines use a series of eight shift instructions to
separate each bit.

In order for the 6522 to toggle PB7 at the end of each countdown, bits 6 and 7 of the
auxiliary control register are set. Also, for no valid reason, port B is set completely to output
(bit 7 is dready in the output state). Because port B is zeroed in this process the printer’s
strobe is activated and an unwanted character is sent to the printer.

CASSETTE INPUT

The cassette circuitry connects to the CB1 line on the 6522. When this goes from low to high
the CB1 flag is set in the interrupt flag register of the 6522. Timer-2 is used to count time
before looking at the CB1 flag, and each bit is built up into a whole byte using a series of
rotate instructions.

CASSETTE RELAY

Finally, the cassette relay connection is activated before any of the cassette routines by setting
bit 6 of port B on the 6522. This hit is cleared after al cassette operations, deactivating the

relay.

2 BASIC

2.1 Introduction

An understanding of the workings of BASIC is necessary if it isrequired to incorporate machine code
routines within BASIC programs, or if special utilities, e.g., ‘Renumber’, are to be written.

2.2 Memory map of BASIC

BASIC israther greedy on the RAM — hereis how it uses its memory:

#0000 — #00FF — almost al is used by BASIC — see Chapter 5.
#0100 — #010F — used when converting floating-point numbers to
strings.

#0110 — #01FF — the normal 6502 stack area.

#0200 — #02FF — partialy used by the non-standard parts of BASIC
(e.g., DRAW and MUSIC).

#0300 — #03FF — an input/output area used by the 6522. Thisis not

RAM.
#0400 — #04FF — not used by BASIC —reserved for use with the disk

system.
#0501 — (#9C) — 1 —the BASIC program occupies memory as far as

indicated by the address in locations #9C and #9D.

(#9C) — (#9E) — 1 — any simple numeric variables are stored here,
along with the identification of each string variable.

(#9E) — (#A0) — 1 —numeric arrays are stored in this area, along with
the identification of string arrays.

(#AO) — (#A2) —thisarea of memory is unused. It can be seen that
pointer #A0 reaches up to meet pointer #A2 coming down.

(gA2)+1 — (#A6) —this areais used for storing both permanent and
temporary strings of data. Temporary strings are only cleared
when there is no more room below #A2, or when the FRE function is used.

#9800 — #9BFF — a copy of the standard character set is created here
when a HIRES command is executed.

#9C00 — #9FFF — a copy of the alternate character set is moved here
for usein HIRES.

#A000 — #BFDF — video memory used in HIRES mode.

#B400 — #B7FF — the standard character set when in TEXT mode.

gB800 — #BBFF — the alternate character set when in TEXT mode.

#BB80 — #BFDF — the video memory when in TEXT mode. Note
that this overlaps part of the alternate character set.

BFEO — #BFFF — unused.
2.3 The format of a program

A program is stored in a completely different way from its external appearance. If you enter asimple
program and then use PEEK to see what has been entered, you will not find evidence of either the
program keywords (such as SHOQOT) or of line numbers.

Each lineis stored in its correct place in the program in an exact way. Consider the example:

10 POKE4,3 20 END
Here is how that is trand ated:

#0501,2 Link address to the next line in the program —in this case,
#50A. (Remember that the low byte of the addressis
#503,4 always first.)
[Two-byte binary form of the line number, e.g., #0A.
#505 /A one-byte ‘token’ which means ‘POKE’ —#B9. All BASIC

keywords have a unique token value, always between t80
land #FF, as this conserves memory and makes it quicker
to execute an instruction (Table 2.1, page 12, gives alist of
all possible tokens).

#506 The ASCII codefor ‘4" — 434,

#507 [The ASCII code for comma— #2C.

#508 The ASCII codefor ‘3" — #33.

#509 IAn end of lineindicator of #00.

#50A,B The link to the next line— #510.

#50C,D Line number 20.

H#50E Token for END — 080.

H#50F End of line— #00.

#510,1 End of program’s link field — always contains a value < 256. In other words, #511 must be

zero, but #510 could be anything.
#512 Start of free space.

Table 2.1 List of all BASIC tokens

#80. ENMD #81. EDIT
#3Z. STORE #B83. RECALL
#54. TROHW #B5. TROFF
#9&. PF #B7. FLOT
#9B. PULL #B?. LORES
#84. DOKE #8Fk. REFEAT
#8C. UNTIL #80. FOR
#BE. LLIST ®5F. LPRINT
#20. HEXT #71l. DATA
#P2. TNPUT 89E. DIM
#94, CLS #35. REALD
#2&,. LET #77. GOTO
#98. RUN #77. IF
#96. RERTORE #9E. GOSUB
#PU. FRETURN #90. REM
#FE. HIMEM #3FF. GRAR
#A0. RELEASE #Al. TEXT
#A2. HIRES #AS. SHEOT
#A4. EXFLODE #AS. IAP
#N&. FING #A7. SOUND
#AB. MUSIC #a7. PlLay
#MA. CURSET #RAE. CURMOV
#Al. DRAW #nb. CIRCLE
#AE. FATTERN #AF. FILL
#BO. CHAR #B1. FPAPER
#B2. Ih¥k #B3. STOF
#B4. ON #B3. WALT
#RB&. CLOAD #B7. CSAVE
#B8. DEF #H9. FOKE
#BA. PRINT #BE. CONT
#BC, LIST #BD. CLEAR
#BE. BET #BF. CALL
#oo . ! #C1. MEW
#E2. TRAE(#CZE. TO
#C&. FN #C=. SPCA
#Ch. € #C7. NAUTO
#£B8. ELSE #C2. THEN
#CA. NOT #CB. STEP
#CC. + #CD. —

#CE. * #CF. 7

#oo, -~ #D1. AMD
s02. OR #D3, >

#04. = #05. <

#DA. SGN #07. INT
#D8. AES #0%?. USR
#. FRE #DE. FOS
#DC. HEXs #0OD. &

#DE. 5QR #DF. FRHND
#E0. LN #EL. EXF
WEZ, (A5 HEZ., SIN
8E4. TAM #HES. ATMN
8E&. PEEK #E7. DEEHK
#FE8. LOG HET. LEN
BEN. STR% #EE. VAL
#EC. ASC #HED. CHR%
BEE. FI1 #EF. TRUE
#Fo. FALSE #F1l. KEYS
#F2. SCRN #FX. FDINT
AF4. LEFTE® #FS. RIGHT®

Notethat thetokenslisted arethose for VI.I ROMs. The only differencesfor V1.0 ROMsare:
‘STORE’ is‘INVERSE' and ‘RECALL’ is‘NORMAL’.

The use of the link addressis to allow a quick method of locating a specific line. Y ou can try this
yourself by typing:

| = #501: REPEAT: J = I: | =DEEK(I): UNTIILI <256: PRINT J

which finds the highest address of your program. Since the links affect the ‘LIST’ command, you can
have endless fun atering the links of a program so that, for instance, a program listsitself backwards!

Since the line number is aways stored in a 2-byte binary format, it must be realized that thereis no
saving in having aline number of 5 as opposed to 50 000 — except where a GOTO or GOSUB occurs.
GOTO 12345 takes up 6 bytes, but GOTO 5 only needs 2 bytes.

2.4 Pointers

As mentioned in the memory map, there are anumber of pointers used by BASIC to separate a
program from its variables and arrays. Not al of these are useful: #9A is the start of the BASIC pointer,
but BASIC refusesto work if you move it from its normal value of #500.

The most important pointer isthat at #9C which gives the address of the start of BASIC variables— or
the end of the BASIC program + 1. Printing the DEEK of #9C is often more useful than the FRE
command since it gives you the exact position of the end of your program. When a program is saved,
this pointer is used to give the upper address limit. It follows, therefore, that by adjusting the pointer at
#9C you can save more than just the BASIC program using a single CSAVE — though remember to
DOKE the correct value before you do anything else after you have loaded back. The Oric assumes that
#9C is always correct, adding or subtracting values as a program is altered.

When a BASIC program is loaded the upper load address is automatically stored back at #9C. Version
1.0 owners should beware of loading machine code programs in on top of BASIC programs since the
#9C pointer will then point to the end of that machine code section. The solution to thisis to either
correct #9C or load machine code routines before loading aBASIC program. Version 1.1 owners need
not worry about this particular fault.

HIMEM

The HIMEM command is often most unhelpful — especially on V1.0 machines. In cases where you
cannot persuade your machine to do HIMEM correctly, smply DOKE #A6 with the value before
running the program. If you wish this to be done as part of your program, you will also have to alter
#A2 to the same value as #A6, otherwise strings will be placed in the wrong part of memory.

2.5 Numeric variables

All calculations are donein *floating-point’ arithmetic. This means that an expression such as ‘1+1’
presents as much difficulty as *3.1415+9.7373'.

When you assign avalueto avariable, asin ‘LET A=52', thisvariable is stored away in a 7-byte area
comprising:

Two bytes containing the identification *A’.

Five bytes containing the floating-point representation of the number. The exact format of these 5

by’ tes will be described in Chapter 6.

The identification is simply the first two characters of the variable’ s name, or one character followed
by #00. Thetop bit in each of these can be set for the different types of variables—for anormal
numeric variable both bits are clear.

For the fastest possible calculations, always use simple numeric variables. It must be stressed that ‘10
I=1+4" is slower than *10 1=1+ J.

2.6 Integer variables

These are stored in the same amount of memory as for normal variables, but the format is different:

1. Two bytes of identification (as before) with the topmost bits set in both bytes.

2. A 2-byte binary value of the integer stored in twos-complement form with ahigh byte followed by a
low byte (i.e., against the usual convention).

3. Three unused bytes containing zero!

The advantage of using integer variables is only where it would save the use of INT. Contrary to many
magazine articles stating the opposite, there is no saving in aprogram that uses integer variables (but
seeinteger arraysl).

2.7 String variables

Any string variable has two components:

1. Anidentification of the variable' s name, occupying 2 bytes, as for numeric variables. To identify the
variable as a string the second byte has the top bit set. Thisidentification is followed by the length of
the string, the address of the string, and two spare bytes.

2. Thestring of characters must be located somewhere in memory.

The first component is in the area between (#9C) and (#9E) — as for any numeric variable. The second
component, however, can bein two distinct areas:

1. If aprogram assigns a definite value to a string variable, with either READ or LET, then the first
component of the string pointsto the place in the program where the string has been entered. So,
unlike some other computers, the Oric does not waste memory space by repeating the same set of
characters.

2. If astring ismodified in some way, e.g., LEFT$is used, or one string is moved to another then the
resultant string is placed in the string temporary space which lies between the top of available
memory and the end of array space. The pointer to the next string space works backwards through
memory o that new arrays can be added without the need to reorganize the strings. Since a string
could be created that makes an earlier version redundant, it should be noted that the string area will
eventually become full. When this happens, or when the FRE function is called, a subroutine known
as ‘garbage collection’ is entered and all unwanted strings are removed. Garbage collection can
occur at any time when a string is being created and can take several minutes to complete. The
length of time that garbage collection takes is in direct proportion to the quantity of permanent
strings.

2.8 Arrays

Each element of an array is stored in the same format as an equivalent single variable, but without the
wasted space. For the integer arrays only 2 bytes are needed per number stored.

An array is stored in sequential order in memory, e.g., consider the array A(1,1,1). The array is stored
working on a left-to-right basis:

A(0,0,0),A(1,0,0),A(0,1,0),A(1,1,0),A(0,0,1), etc.
For each array there is an overhead of at least 7 bytesin the memory area between pointer #9E and #A0
This areais made up as follows:

1. Two bytesidentifying the array name — exactly as for variables, with the top bits set or cleared to
indicate the type of array.

2. A 2-byte binary length which gives the exact amount of memory occupied by this array (excluding
the text part of a string).

3. One byte which gives the number of dimensions.

4. For each dimension, working from right to left, there is a 2-byte number which gives the dimension
plus one (remember that you can have a zero subscript when accessing part of an array). This
number is stored with the high byte followed by the low byte.

2.9 READ and DATA

It is often useful to be able to use READ in amore controlled way — reading from a particular line of
DATA, Some more advanced BASICs have this facility — thisis often known as RESTORE N, where
N isthe line number from which DATA isto beread.

The READ command does not keep account of the next line number from which to read, but instead
uses#B0 storethe last addressin memory where DATA was read. After each READ command, the
line number used is stored in #AE,F so that an error message can report on the current data line (for
‘OUT OF DATA’, etc.). Writing to #AE,F will have no effect on READ operations.

04E0: AS 00 LDA $00

04E2: B85 33 STA $33
04E4: AS 01 LDA %01
0O4E6: 85 34 STA %34
04EB8: 20 E4 Cé JSR $C&4E4
O4EB: AS CE LDA $CE
O4ED: 38 SEC

O4EE: E9 01 SBC #%01
04F0O: 85 BO STA $BO
04F2: AS CF LDA $CF
O4F4: E9 00 SBC #%00
0O4F&: 85 Bl STA $Bl
04rFB: &O RTS

04F9: EA NOP

04FA: EA NOP

A RESTORE N FACILITY

Only a very short machine code program is needed to give BASIC this facility, which has been listed
below in Program 2.1. Although the routine has been put at address #4EQ, it will work at any spare
memory location.

Version 1.1 ROM owners should change #4E8 to * JSR #C6B9'.

The machine code routine takes the line number stored at address 0,1, calls a ROM routine to find the
address of that line, and stoics that address minus 1 at #B0 to #Bl.

USING RESTORE N

A BASIC program has been listed below (Program 2.2), for V1.0 owners, which demonstrates how to
call the machine code routine. Program 2.3 isthe listing for V1.1 owners—the only difference isthe
JSR address in machine code.

10 A$="A50089533A501853420E4C4ASCEIBETO18SBOASCFEROOBSBLAD "
1S I=#4E0

20 FORI=1TOLEN(AS) /2: B=VAL ("#"+MIDS (A%, (I-1)%2+1,2)):C=2+1-1:POKEC,E
I0 NEXT

100 INPUT"WHICH LINE?";L

110 DOKEO,L:CALL#4EQ

120 FORI=1TOZ: READAS: PRINTAS: NEXT

130 60TD100

1000 DATA43Z,55,64,77,88,99

1010 DATATHIS IS LINE 1010

1020 DATA&EG,77,88,99,84,66

2000 DATALINE 2000 DATA

000 DATASS, 6, 4,4

Program 2.2 Restore N -~ BASIC example for version 1.0

e

S REM NEW ROM VERSION OF RESTORE X
10 A$="AS008533A501853420B9CAASCEIBEY0185BOASCFEYOOESE1 0"

15 Z=#4EO0

20 FORI=1TOLEN(A$) /2: B=VAL ("#"+MID$ (A%, (I~1) #2+1,2)) :C=Z+1~1:POKEC, B
30 NEXT

100 INPUT"WHICH LINE?"jL

110 DOKEO,L:CALL#4EO

120 FORI=1T03:READAS: PRINTAS:NEXT

130 60T0100

1000 DATA43,S55,66,77,88,99

1010 DATATHIS IS LINE 1010

1020 DATALA, 77,88, 99, &b, b&

2000 DATALINE 2000 DATA

3000 DATASS,&,4,4

Program 2.3 Restore N — BASIC example for version 1.1

2.10 Using RND

The RND function will start from the same sequence of numbers every time you start up an Oric,
providing the argument which follows RND is positive. Although it is not made clear in the manual,
when the argument is negative this starts off a new sequence of random numbers.

It follows that in order to make RND truly random, you must supply it with an initial negative
random seed. One of the software timers, incremented 100 times per second, can be employed here.
Unless you do a WAIT command, and providing there has been some sort of user input (to delay
the machine by an unknown time), you can use the third timer at #276,7. For example:

5 GET Z$
10 A=RND(— DEEK (#276))

Note that A itself isnot a very random number —it will usually be a number smaller than 0.01 — but any
RND afterwards should be correctly balanced between 0 and 1.

2.11 Using a printer

It is often required to make a choice as to whether to print something on a printer or on the screen.
Since PRINT and LPRINT are different commands, it would seem that a program would need two
separate lines to handle any one PRINT statement. Fortunately for us, the LPRINT command can be
achieved by poking 255 into #2F1 and using PRINT. Thiswill stay in force until either:

1. A proper LPRINT command has finished.
2. The program returns to command mode.
3. Address#2F1 isreset to zero.

Note that this affects al types of PRINT — even the printing of prompts on INPUT commands!

2.12 The Oric’s status bytes

There are two locations in page 2 which are concerned with the status of the keyboard and the screen.

The first of theseis at #20C and controls the CAPS lock function. This location is 127 when CAPSis
off and 255 when on. If you put any other valueinto 420C, then the Oric will no longer respond
correctly.

The most important status location is at #26A. The lower 6 bits of this byte each have their own
meaning:

BIT 0 —cursor ON when set.

BIT 1 —screen ON when set.

BIT 2 —not used.

BIT 3 —keyboard click OFF when set.

BIT 4 —ESC has been pressed.

BIT 5 —columns 0 and 1 protected when set.

This means that you can POKE into #26A in order to turn off keyboard click, etc., rather than the
unpredictable method of printing control characters.
For example, POKE #26A,10 turns off keyboard click and the cursor.

2.13 INVERSE and NORMAL

Version 1.0 owners will recognize these two commands as they crop up when listing all the tokens.
Version 1.1. users have STORE and RECALL instead, but what did INVERSE and NORMAL actually
do?

Although the commands do not actually work, on the V1.0 machine there are still some instructions
that relate to them. The theory isthat if you set the top bit when displaying a character on the screen, it
isprintedin ‘inverse’ colours — this has been explained in Chapter 1.

What remainsin old ROM Oricsisthe code which OR’s location #2F7 (the inverse flag) with any
character asit is printed. Unfortunately, PRINT nearly always strips off the top bit — otherwise it would
be possible to use POKE #2F7,128 to create an INVERSE facility on the old ROM Oric. You can have
some fun though putting different values into #2F7 and watching PRINT go haywire!

Incidentally, the only place where PRINT does not take off the top bit (again, only for version 1.0
Orics) is where control-D double height isin force, and when the second lineis printed.

2.14 Creating windows of text

The normal way of presenting 27 lines of scrolling text is by no means fixed. It is possible with just a
handful of DOKE commands to make just part of the screen scroll up — leaving the rest of the screen
untouched. This has many uses where part of the screen is being plotted.

Here are the DOK Es needed for version 1.0 machines:
1. DOKE #26D with the start address where scrolling is to begin minus 40.
2. POKE #26F with the number of lines which are to be scrolled.

3. You must clear the screen after doing these commands.

For version 1.1 ROMs, the procedureiis:

1 DOKE #27A with the start address of the screen.

2. DOKE #278,DEEK (#27A)+40.

3. POKE #27E with the number of linesto scroll.

4 DOKE #27C, (PEEK(#27E) — 1) *40 —thisis the number of charactersto be scrolled up and

must agree with location #27E.

The CLS command should be issued after setting up a different format for the screen.

2.15 Controlling PRINT

On version 1.1 machinesthe PRINT @ facility allows you to print at any place on the screen. Thisis
also provided on 1.0 machines by way of an add-on machine code routine in the manual, but no
explanation is given on how it works. If you wish to use the general PRINT subroutine in a machine
code program, you will need to know alittle about how PRINT works in this respect.

There are two locations which control where the next PRINT goes to: #268 — the number of lines down
—and #269 — the number of lines across. These are relative to the start of the screen as defined by #26D
(version 1.0) or #27A (version 1.1). On version 1.1 machines you a so have to write the address of the
start of the line to #12,3.

On version 1.0 follow this example of moving to D lines down and A characters across:
100 POKE #268,D — 1:PRINT:POKE #269,A

Hereisthe sameline for version 1.1:

100 POK E#268,D:POK E4269,A:DOKE#12,DEEK (#27A)+(D — 1) *40

To avoid large numbers of solid blocks appearing everywhere, it is recommended that you turn off the
cursor before moving around the screen.

2.16 Bugs in BASIC

Most people will be aware of one or two problems with version 1.0 BASIC, the most notable example
being the TAB function, which is quite useless (although the previous section should help with the
problem).

In this section, we look at al the bugs and, where relevant, how they can be overcome. First of all, here
are the quirks found in version 1.0 machines.

1. TAB and COMMA do not work correctly. It is best to use either SPC or, aternatively, POKE #269
with the TAB position.

2. STR$, when packing a positive number, putsthe attribute ‘2’ at the front instead of a space. This
often results in green numbers! The cure isto use MID$ to take off the unwanted character or to define
anew STR$ function using the & function.

3. EL SE does not work under several conditions, for different reasons, so it is best to smply avoid the
command altogether.

4. HIMEM is not set correctly on power-up. The solution isto always put ina HIMEM command at
the start of the program, e.g., HHIMEM #97FF.

5. When in high-resolution mode, the message ‘ SAVING' is till output to address #BB80 — putting
one line of junk onto the screen. There is no easy cure for this problem, apart from writing your own
save-to-tape routine. If you are saving a high-resolution screen, then first copy it to afree area of
memory and save that part of memory.

6. When the printer isin the middle of either an LLIST or a series of LPRINTS, characters are often
corrupted into ‘squiggles . Thisis because the interrupt routines which read the keyboard frequently
conflict with the use of the printer. The solution is to stop the clock (CALL #EDO01) before printing
and to start it again after printing is complete (CALL #ECC?). If you are using LLIST, then you can

type:
CALL #EDO1: LLIST

and then use the Reset button underneath.

7. When you use CLOAD from within a program, BASIC unkindly ends the program once the load is
complete. To get around this, you could do a series of CALL instructions instead of CLOAD. Chapter
4 contains all the necessary information.

8. The function HEX$ has an unfortunate tendency to print just the hash sign for zero. This condition
should be specially tested for in your program.

9. The GET command refuses to believe that you have pressed the single quote key and instead returns

an empty string (* “). It isimportant that you test for this condition before using one of the functions
such as ASC.

10. If aprint line starts with control characters— e.g., ESC N, etc. —then the protected columns 0 and
1 are used, overwriting any PAPER and INK attributes. Always start the line with a non-attribute
character, such as space,

11. The alternate character set is exactly one bit out of place! The purpose of the alternate
character set, when not modified for a special use, isto provide a ‘chunky’ graphics capability. The
format of such charactersisidentical to that used in the BBC's CEEFAX system, allowing a resolution
of 80 chunks across by 84 chunks down. Each character cell contains six such chunks, which means
that 64 graphics definitions are required to allow for al possihilities. The Oric’s character set hasin
fact been set up for this. Characters between 32 and 95 contain all variations between atotally blank
cell and afilled cell. However, in version 1.0 the entire character set must first be divided by 2 (and
therefore shifted to the right) before it can be used. This can be done either with a ssimple BASIC loop:

FORI = #B900TO #BAFF: POKEI,PEEK(I) /2: NEXTI
or by using a short machine code routine:

LDY 000

LOOP: LSR B900, Y

LSR BAQO, Y

DEY

BNE LOOP

RTS

12. If the single quote character is found at the start of a DATA item, then because of confusion
with the REM facility, therest of the DATA lineisignored. Use double quotes around any DATA
items containing single quotes.

13. When loading in amachine code program, be warned that the ‘end of BASIC’ pointer at
#9C,D is altered to reflect the end address of the machine code.

To overcome this you could either reset the value at #9C to #9D after the load or make it arule to
always load the machine code routines first.

14. In the instruction POKE N, #8, the hexadecimal sign upsets BASIC, and zero will be POKEd.
Always use a decimal value or avariable instead. This fault is the reason why you will often see
decimal numbers mixed with hexadecimal numbers in this book.

The DOKE command does not suffer from this fault.
15. Oneinteresting bug isthat POINT will work in text mode!

16. When loading afile, the filename is only printed when it is actually supplied within the CLOAD””
command

17. Although potentially useful, it is still a fault that makes the screen scroll down when the cursor is
moved too high.

The following faultsliein version 1.1 ROMs:

1. ELSE failsto work should the colon character occur in quotes after the EL SE. For example: IF A=1
THEN PRINT ELSE PRINT “HELLO:".
2. One very obscure problem arises when:
(a) The cursor has been turned off.
(b) A character is placed at the very spot where the cursor would have been.
(c) That character is ‘inverse’ — between 128 and 255.
When this happens, and providing interrupts are running, that character is forced back to ‘ normal’
mode — losing the top bit of the character.

One solution for this problem isto force the current cursor position to a place on the screen (or even off
the screen!) where it can do no harm. Thisis done by poking locations @268 and t269 as described
earlier.

3. One very minor bug isthat going into HIRES when in control — S mode results in BASIC writing to
the wrong part of the screen. Make sure that you have enabled the screen before using the HIRES
command.

3. USING MACHINE CODE

3.1 Advantages of machine code

BASIC, though easy to use, hard to misuse, and ideal for simple programs, has two serious drawbacks:
1. Itisvery dow to run.
2. It can often (but not always) use up alarge amount of memory space.

One alternative language, FORTH, although faster than BASIC, is quite difficult to use. It isunlikely
that you would ever see a program on the market which used FORTH, for the simple reason that the
FORTH language would have to be sold as well.

Machine code, on the other hand, can be loaded and executed on all Oric machines. Indeed, in many
cases a machine code program will be easier to convert to a different machine than its BASIC
equivalent.

The speed of a computer like the Oric is not always appreciated. A simple machine code instruction
takes two microseconds to compl ete, whereas any single BASIC command will take at least 2
milliseconds.

If you intend using machine code you will quite definitely need two things, in addition to this book:
1. A book on the programming of the 6502.

2. An assembler/disassembler program. The one used in the preparation of this book was ORICMON
from Tansoft 1.td. Without such a program, you will have to work out the machine code instructions
by hand. An assembler allows you to enter just athree character mnemonic — such as LDA —and it
works out the actual machine code values— e.g., LDA #is#A9.

A full discussion of machine code is beyond the scope of this book, but at the end of this chapter you
will find some advice on the more difficult aspects of this subject. The book 6,502 Software Design by
Leo Scanlon is particularly recommended as both a tutorial and areference guide.

3.2 Storing machine code

A programmer has no choice as to where a program written in BASIC resides — he or sheis stuck with
the area #501 upwards.

A machine-code programmer has the whole of the machine available, at least in theory. If a machine
code program will never return to BASIC, or use a subroutine in the ROM, then that program can be
located anywhere between #400 and #B4FF, and can use the area #00 to #2FF as a scratchpad area (not
forgetting to allow a certain amount of room for the stack).

The programs and subroutines in this book are of the kind that always return to BASIC, soitis
important not to upset BASIC too much. This means not overwriting certain RAM areas in pages 0 and
2 and allowing BASIC to create variables and strings. Y ou can use HIMEM to limit BASIC' s memory,
and can thereafter use the remaining memory for your own needs. Chapter 5 explains which areas of
page 0 and page 2 RAM are used by BASIC.

If you are writing an add-on machine code program in order to manipulate a BASIC program, then you
really want to put your program in a place which is unused. The most common of these are:

1. The stack area—from #110 upwards — can be used by short programs. Providing that you do not do
many GOSUB, FOR, or REPEAT commands, you will be able to use up to about #1CO. The stack
areais never cleared by BASIC, except during normal use.

2. From #400 to #4FF, 256 bytes are available. Be warned, however, that the Oric disk system makes
use of thisarea.

3. Thefirst 256 bytes of each character set are unused, so programs can be put at #8400 to #B4FF and
#B800 to #B8FF (or in HIRES mode at #9800 to #98FF and #9C00 to #9CFF). Although the Reset
button on the Oric causes the character set to be regenerated these areas are not affected.

4. Sincethe alternate character set israrely used the entire area between #8800 and #BB7F is

available for a machine code program. This area of RAM isideal for facilities like Renumber.
5. Another ‘hidden’ area lies between #BFEO and #BFFF. This areawill only be overwritten if
HIMEM isincorrectly set, and survives the commands ‘HIRES', ‘ TEXT’, and the Reset button.

3.3 Types of machine code program

When you write a program that is all in machine code you do not need to worry about interfering with
BASIC. If your program callsthe BASIC ROM for certain functions you should keep clear of the same
areas of RAM that the particular subroutine uses. For instance, if using the MUSIC command keep
away from the parameter area #2EQ to #2EF.

Since a machine code program can be made to autorun at the start address of the load, it makes sense to
use this feature and make your program start at the earliest address.

If you are using an Assembler program, such as ORICMON, you will aso have to avoid the area of
RAM used by that program.

A common type of machine code program is used when a BASIC program needs an extra facility, or
perhaps a machine code subroutine is used to speed up part of the program. In this case the BASIC
program will often use DATA statements in order to set up the machine code. A more efficient way, for
larger sections of code, isto load in a separate machine code file from tape or disk.

Another method isto put the machine code after the BASIC code and modify the #9C pointer before
saving to encompass the machine code. The first instruction in the program should reset the pointers
#9C, #9E, and #A0 back to the end of the program.

For example:

BASIC program #501 — # FOO

M/C program #2800 — #2E00

Before saving, DOKE #9C, #2EQ0. In the program:

1 DOKE #9C, #1F02:CLEAR
An example of a BASIC program creating a machine code subroutine can be found below in Sec. 3.4.

The third type of machine code program occurs where a BASIC program is being modified. Normally
such aroutine will be loaded separately from the BASIC, although you must remember to reset the #9C
pointer on version 1.0 machines — this can often be done by the machine-code routine itself.

3.4 Creating a machine code program

Nearly all the programsin this book have been listed in terms of the assembly mnemonics and the
actual machine code. In order to set up the programs you are best advised to use a machine code
monitor/ assembler package. If such afacility is not available, you can quite easily use a short BASIC
program to read in machine code.

Program 3.1 is an example of a program to read in a short section of code by using DATA statements.

The program itself is very useful, asit totally disables the use of control — C. This works by testing for
ASCII code 3 in aroutine that is patched into the dow interrupt link.

3 REM IGNORE CONTROL-C

10 FOR I=#BFEQ TO WBFEE:READ D:POKE [,D:MNEXT I

20 DATA ®B, 848,840, 8DF , 82, #C9, #8353, DO, 83, #CE, #DF , 82, #568, #78_ #40

S0 IF FEEK (#DO0OC) =166 THEN DOKE®ZZ1,#BFEO:POFE®ZI0, 76
40 IF PEEK(#D0O00)< »166 THEN DOKEWZ4E, WBFEO: POKEN24A, 76

Program 3.1 Disable control - C

3.5 Calling a machine-code routine

A machine code program which is completely self-contained can be automatically run by using the
AUTO command. Alternatively, a CALL can be used to start the program off.

Where aBASIC program callsam/c subroutine, CALL is often used. If a CALL isto returnto BASIC
the subroutine must end with the RTS (#60) instruction. Do not worry about saving registers when
writing such a subroutine.

CALL isalso useful when entering add-on subroutines, such as * Renumber’, when it isused as an
immediate command.

In addition to CALL NN, there are severd alternatives:
|. USR and & functions.

2. ! —the extension command.

From the point of view of a machine code subroutine, CALL NN is much the same as!, and
USR(X) isidentical to & (X). One difference is in the setting-up. For the extension command ‘!’
you DOKE the start address into #2F5, and for ‘&’ you DOKE the address into #2FC. The USR
facility uses DEFUSR in order to set up the start address.

The difference between ‘&’ and ‘!’ (or USR and CALL) isthat & isafunction that returns a value;
the! command can only take in values. Therest of this chapter will only deal with & and!,
although the same considerations apply for CALL and USR.

3.6 Passing information to machine code routines

The most common method of passing small amounts of datato a machine code routineis with the
DOKE and POKE commands. For small data areas, such as for addresses, use the area#0 to #B in page
0. Chapter 5 will help you in determining other areas of memory available.

The! and & keywords can both take parameters, e.g., & (A1*3), and this will be explained in Sec. 3.11.

A machine code routine could read a BASIC variable, but this would involve quite a bit of searching
and conversion.

3.7 Patching into BASIC

Although BASIC isin unalterable ROM, there are severa cases where it jJumps out to an area of RAM.
The reasons for doing this are:

1. It lets programmers patch in extra facilities.
2. Italowsfor add-ons, such asdisks.
3. It can he more efficient to write some instructions in page O.

Each of the patch areas has been listed bel ow, with the address for version 1.1 ROMs givenin
brackets:

At #1A —ajump vector to the routine that prints ‘READY’. By changing this jump to your own
routine it is possible to:

1. Trap errors.
2. Prohibit control — C.

See the ON — ERROR facility

of Chapter 8.

At #E2 lies a very important subroutine. At #E2 the address at #E9,#EA is incremented. Then at #E8,
the contents of the address at #E9, #EA are loaded. This provides a very fast subroutine for reading in
characters from the program.

After getting the next character, the routine jJumps back into ROM. It is a very simple matter to alter
the routine at #E2 in order to jump to your own subroutine. By doing this, you can look for special
instructions (perhaps ‘IMPLODE’ and ‘PONG'!). ~~~ important consideration is that you jump
back into the ROM as though nothing had happened — remember to save all the registers.

#228 (4244) isthe address of the ‘fast’ interrupt jump. By altering the jump address at #229,A
(#245,6) you can provide your own interrupt handler.

#230 (#24A) is the address of the ‘dlow’ interrupt routine. Control is passed to here at the end of the
fast interrupt routine. Although 3 bytes are reserved here, thereis only the single-byte instruction RTI
present normally.

#228(4247) contains the jump vector for the NMI (Non-Maskable Interrupt) routine, which on the Oric
connects to the * Reset button’.

On version 1.1 only, there are a few extra jump vectors located in page 2 which are concerned with
input/output:

[. #238 linksto the screen output routine used by BASIC commands like PRINT.
#23B jumps to the subroutine which finds which key was last pressed.

#23E jumpsto the printer output subroutine.
#241 contains a jump to the subroutine that prints messages on the top line of the screen. Changing
this jump could be useful if you want to stop messages like ‘Loading’ from showing.

Eal SN

By far the most useful of these patches is the dow interrupt jump which allows you to make the
maximum use of the system’ s interrupts.

3.8 Interrupts

The purpose of an interrupt is to stop a program temporarily and to enter a special subroutine in order
to handle a priority condition. An interrupt on a computer will often be caused by a peripheral (such as
a card-reader) announcing that it has datato transfer.

The Oric takesits interrupt line from the 6522 V1A device which is capable of causing an interrupt for
avariety of reasons. Unless the Oric isloading or saving to the cassette port, the 6522 is set up to create
an interrupt at exact intervals of 10 000 machine cycles— or every 10 ms. In other words, the machine
isinterrupted every one-hundredth of a second. (Y ou should be warned that some BASIC instructions
may cause an interrupt to be missed — e.g., PRINT.)

The length of time between interruptsis stored on the 6522’ s timer-1 latch at #306,7. By atering
locations #306,7 you affect:

1. The repest rate on the keyboard.

2. Theflash rate of the cursor (but not the automatic flash of the VDU chip).

3. The speed of the WAIT command.

4. The speed of processing isinversely affected. This happens because the interrupts ‘ steal” time
from the processor; the more time spent in interrupt handling, the lessis available for the main
task.

When an interrupt occurs, and providing that the *fast interrupt’ jump vector has not been altered, the
following events take place:

1. The three software timers are decremented by one. These are 16-bit counters located in page 2 of
memory and will be discussed in Sec. 3.9.

2. If thefirst timer has reached zero, after counting down from 3, the keyboard is scanned in a search
for any keypress.

3. If the second timer has reached zero, counting down from 25, the cursor is flashed on or off.
Note that the timers being discussed are merely counters in RAM, and should not be confused with the
timer-1 and timer-2 of the 6522.

When an interrupt occurs, the 6502 jumps to the address given by locations #FFFE and #FFFF. Aswas
discussed in Sec. 3.7 thisaddress isin page 2 of RAM, and the jump into ROM can be modified for
ONe' s own requirements.

If the fast interrupt routine does jump into ROM the last operation is to jump back to the slow interrupt
location in page 2, containing the RTI instruction.

Y ou would use the fast interrupt patch if you wanted to add some processing before the keyboard is
scanned. The slow interrupt link allows you to add some processing after the keyboard has been
scanned.

If you intend to modify the interrupt routines, remember:

1. Saveall theregisters that you use, and restore them before you finish.

2. Save any locations that might be in use by the system. For instance, if your interrupt routine calls
the SOUND command you will need to save locations #2EQ to #2EF and #204 (#204 is used when
checking your SOUND parameters).

At the end of your interrupt routine, you will usualy either execute the RTI instruction if all interrupt
processing is complete, or jump back into the normal ROM interrupt routine (to read the keyboard,
etc.).

Writing interrupt routines is much more difficult than writing anormal subroutine. For one thing,
testing can frequently crash the whole machine, and often a fault will not show up for along time. Two
important points are:

1. Remember to save any location that could be used by both your interrupt routine and the main
program.

2. Do not assume the state of any of the processor flags. Be especially wary of the decimal flag —
use CLD or SED if you are doing any addition or subtraction.

Several programs in this book modify the interrupt patches, and by understanding how these work you
will be able to create your own routines.

NON-MASKABLE INTERRUPT

The Reset button on the Oric does not in fact connect to the RESET line of the 6522. Instead, it
activates the Non-Maskable Interrupt (NMI) line of the 6502. Whereas a normal interrupt can be
disabled, the NMI causes an unconditional jump to the address contained in locations #FFFA, #FFFB.
On the Oric, thisisajump instruction in page 2 of memory which on the Oric normally leadsto a
‘warm-start’ routine in ROM. This sets up the 6522, clears the screen, initializes the character sets, and
returns to command mode in BASIC.

When writing machine-code programs it is customary to alter the appropriate address in page 2 (see
Sec. 3.7) so that pressing the reset button restarts the machine code program. The button can be
disabled by typing POKE DEEK (#FFFA),64.

The ‘BRK’ instruction causes an interrupt, but sets the BRK flag in the 6502 processor. It is used by
some machine code monitors as a terminating command — just as RTS is used to return to BASIC after
aCALL instruction.

Use RTS instead of BRK if your machine code monitor expectsit.
3.9 Software timers

This subject was mentioned when interrupts were discussed. There are three 16-bit counters stored in
RAM, maintained by the interrupt routine. The first two timers are in permanent use on the Oric: the
first countsthree interrupt cycles (normally 30 ms) before each keyboard read while the second counts
25 interrupts (250 ms) before flashing the cursor on or off. The third software timer is only used
occasionally by the system —for WAIT, TEXT, and (in version 1.0 only) when using the HIRES
command. This meansthat it is available for use within your own program. With very little trouble,
you can time events to one-hundredth of a second.

Remember that the software timers will only be decremented when interrupts have been enabled.

Each of the three timers occupies 2 bytes, in the normal tradition of the low byte first, starting at #272.
Therefore, the all-important third timer islocated at #276,7. The WAIT command can be simulated by
asimple use of DOKE and DEEK into location #276, but with the advantage that the program can do
further work while the third timer is counting.

Although it isa simple matter to set up this timer, there are a number of subroutinesin ROM which
handle each of the timers.

The A, X, and Y registers need to be set up as follows:
A — set to the timer number minus one. For instance, the third timer requires a value of two.

Y —set the Y register to the low part of the timer value.
X —set the X register to the high part of the timer value.

Here is atable of calswhich relate to the software timers:

Name Version 1.0 Version1.1
Start 6522 Clocks #ECC7 #EDEO
Stop 6522 clocks #EDO1 #EE1A
Update timers etc #ED1B #EE34
Clear all timers #ED70 #EESC
Read atimer into X Y #ED81 #EE9D
Write XY into atimer #EDS8F #EEAB
Wait for time X 'Y #EDAD #EEC9

8.10 Machine code advice

As mentioned previously, a book on machine code is essential, not only to teach the subject but asa
constant guide to the 6502. This section covers some of the more error-prone areas of programming, in
the hope that you may learn from my own mistakes!

BRANCHES

The following observations may be useful:

1. Any branch will depend on one bit within the processor status register. Branch instructions work in
pairs, e.g., BEQ, BNE; BCS, BCC.

2. The operand in the branch instruction gives the number of bytes, forward or backward, to jump. If
this number is between 0 and #7F the branch is forward in memory; otherwise the jump is to a previous
location. When a backward branch is required the operand is#100 minus the number of locations that
you are jumping. For example: 1200 BNE 11C2 resultsin an operand of (#100 — (#1202 —#11C2)) =
#CO.

Any good machine code monitor will work out branch offsets for you. An assembler will allow you to
enter either an absolute address or a meaningful label.

COMPARE

A newcomer to 6502 programming can become confused with the CMP instruction when testing less-
than or greater-than conditions.

The compare instruction worksin a similar way to subtract as regards the use of the carry flag. When a
subtraction is done, the carry flag is used to indicate a borrow when the value being subtracted is
greater than the accumulator. The advantage of the compare instruction isthat the A, X, and Y registers
are not affected.

When writing a compare instruction do amental subtraction of the value given in the instruction from
theregister value (A, X, or Y). If theresult is zero, the zero flag is set. If theresult is positive, including
zero, the carry flag is set; otherwise it is cleared.

THE BIT INSTRUCTION
BIT is probably the least used of all theinstructions— CMP is often used instead.

Like the compare instruction, BIT only alters flags in the processor status register.

If you wanted to examine anumber of locations, picking out one bit, then you would load the
accumulator with the bitsto examine and just use BIT with each address. If you used the AND
instruction, you would need to keep reloading the accumulator.

BIT also traps bits 6 and 7 of the location you are examining, reflecting them in the overflow and
negative flags.

Because BIT does not affect the A, X, and Y registers, you can use BIT in a sneaky way to conserve
memory. Consider the program:

TRY1 LDA#1

BNE CARRY-ON
TRY2 LDA #2

BNE CARRY-ON
TRY3 LDA #3
CARRY-ON:
This can bereplaced by:
TRY1: LDA#1

#2C
TRY2: LDA #2

#2C
TRY3: LDA #3
CARRY-ON:

The ‘2C’ isthe opcode for the 3-byte version of BIT. Here we use the fact that BIT does not alter the
accumulator in order to skip past one or two load instructions. Y ou will find this kind of confusing
programming when you disassemble the Oric’s ROM.

The saving is so small asto be not worth the trouble, but it does demonstrate an interesting
programming technique.

THE STACK

When using the stack remember:

1. In a subroutine you must leave the stack as you find it. This meansthat if you execute 5 PHA
instructions, you must balance them with 5 PLA instructions. Thisis important because the RTS
instruction will be expecting a return address on the stack.

2. Tofollow up thelast point, here isa common mistake:
1000 PHP

1001 JSR 1234

1234 PLP; attempt to pass processor stack.

3. When saving all the registers on the stack, use a sequence such as:

PHP PHA TXA PHA TYA PHA
When you want to restore the registers, remember to reverse the order:

PILA TAY PLA TAX PLA PLP

If you are saving an area of memory on the stack you will need to reverse the loop when loading
back from the stack. For example, if thisis your save routine:

LDX #F

A:

LDA 2EO,X
PHA

DEX

BPL A

then the reverse procedure is:
LDX #o0

A:

PLA

STA 2EO,X

INX
CPX #10
BNE A

The stack provides the only way of examining the complete processor status register:

PHP PLA
Similarly, to set up the processor status register in one go:

LDA #47

PHA

PLP

DECIMAL INSTRUCTIONS

When a program goes unaccountably wrong always consider the state of the decimal flag. The normal
state for the decimal flag is off. Many ROM subroutines will expect the decimal flag to be cleared, so
remember the CLD instruction.

The decimal flag is only recognized when using either the ADD or SBC instructions, whereas INC and
DEC will always work in binary.

SHIFT AND ROTATE

When using any of the shift or rotate instructions, remember:
1. There is aways one bit coming away from the byte. Thisis always saved in the carry flag.

2. Thereis always one bit coming into the byte. Thisis either zero for shift instructions or the old carry
flag for rotate instructions.

3. Therotate instructions work on 9 bits at atime. Therefore, if you rotate 0000 0001 to the right, the 1
will not appear on the left until afurther rotate instruction.

CLEAR CARRY AND SET CARRY

Two simple rules apply here:

1. Clear the carry flag before doing an addition. If adding numbers longer than 8 bits, leave carry
alone after the first clear carry instruction; for example:

CLC

LDA O
ADC 2
STAO
LDA 1
ADC 3
STA 1

INCREMENT AND DECREMENT

Important points:

1. INC and DEC take no notice of the decimal flag —they always work in binary.
2. INC and DEC do not either use or alter the carry flag. If you want to increment a 16-
bit value, use a branch instruction, asin:

INC 42
BNE B
INC 43
B:

When decrementing numbers, you have to use a compare instruction:

DEC 42
LDA 42
CMP #FF
BNEC
DEC 43
C: NOP

3. When using INC or DEC with several bytes, remember that you can only safely do
one set of INC or DEC instructions at a time. The following example employs such
faulty logic:

INC 42
INC 42
BNE A
INC 43

A NOP

RETURN FROM INTERRUPT

Remember to use RTI to finish an interrupt routine. The only difference between RTI and RTS s that
with RTI the 6502 saves the processor flag on the stack. This means that an interrupt routine need not
save the processor status register.

SUBROUTINES

When the jump to subroutine instruction is executed, the return address is saved on the stack. This
address is saved high byte followed by low byte (this follows the 6502 convention of alow address
being stored in the lower location). This return address on the stack is always one less than the real
return address — the 6502 adds one to the program pointer before executing each instruction.

SElI AND CLI

On the Oric an interrupt can occur at any time. If you want to disable interrupts (which will stop the
keyboard from being scanned and the cursor flashing) you can use the SEI instruction. CLI (clear
interrupt disable) enables interrupts again.

Note that SEI does not stop the 6522 clocks from running, but it does prevent interrupts from being
generated when the clocks reach zero.

SEI should be used when your program is using the stack areain a non-standard way.
3.11 Using the! extension command

The! command allows you to create your own BASIC command. When BASIC encountersthe ! token
it jumpsto the address stored at #2F5,6, assuming it to be a normal subroutine.

PASSING DATA

PEEK and POKE provide one way to send data between your extension subroutine and BASIC, but a
better way is to put the data after the ! command, as you would do for any other BASIC command.

The pointer #E9, #EA will be identifying the byte following the! command as you enter your
subroutine. Y ou can (and must) use this pointer to extract all the data pertaining to the command. When
you exit from your subroutine #E9, #EA must be pointing to the byte following the last byte in your
command.

In order to look at each character, you can call subroutines at #£2 (which increments #E9, #EA) or #E8
(which does not increment #E9,#EA). After the call the next character is passed in the accumulator.
This can be used to pass over delimiters, such as commas.

USING THE FORMULA EVALUATION ROUTINE

If you want the extension command to work with expressions (such as X+ Y) as well as fixed-format
data, you may need to call the ROM subroutine which evaluates an expression.

This subroutine (at #CE8B for version 1.0 ROMs or #CF17 for version 1.1 ROMs) only needs the

WES9, #EA pointer to be set up. At the end of the subroutine the #E9, #EA pointer will be correctly set
to the character following your expression. Note that the expression evaluated can contain the normal
BASIC functions, e.g., ! X* SQR(Y), but be warned that the subroutine assumes that all words have
been compacted into tokens — including such things as the +,—*, and / operators. Asin BASIC,
expressions must be terminated with a comma, colon, or 000 (i.e., the end of a BASIC line).

There are two possible types of answer returned:

1. A string of characters. The information about this string is stored in an area of memory pointed to
by the address #DR, WDA4. In this temporary area there are three bytes: length (one byte) and
address of string (two bytes). When the formularesultsin a string, location #28 is set to OFF. Once
you have finished with the string, you must release the temporary area it used by calling either
#D712 (version 1.0) or gD7CD (version 1.1).

2. A floating-point number. This number is stored in the floating-point accumulator (see Chapter 6).
Location 028 is set to zero to indicate anumeric result.

If you want to convert the number into a signed 2-byte integer, you can simply call #D871 (version
1.0) or #D92C (version 1.1). Thiswill return Y asthe low byte and A asthe high byte. For an
example of usirv ! see Chapter 4.

3.12 Using the & extension function routine

Whereas ! can only be passed data, the % function not only expects data to be passed but also returns a
value. The & facility assumes that g2FC, #2FD points to the machine code routine.

PASSING DATA

There are two types of datathat can be passed — a string of characters or a number. In both cases, &
must have an argument following, surrounded by parenthesis. For example, & (A$), & (4.3+S).

The formula evaluation takes place automatically on the argument, and the results are exactly the same
as described in Sec. 3.11.

When a number is passed, you can either takeit or leave it, but a string requires extra action.

If your subroutine has been passed a string, you must call subroutine #D7F1 (version 1.0) or #D8AC
(version 1.1) in order to free up the temporary string space. Thiswill also extract the necessary
information, storing the length in the accumulator and the address of the string in #91, #92.

RETURNING DATA

Returning data will usually be the final thing that the subroutine does. L ocation #28 should be set to
zero if you are returning a number, or #FF if the result is a string.

To return anumber you simply leave that number in the floating-point accumulator at #DO to #D5 —
see Chapter 6.

Returning a string is a little more complicated, since you must first allocate an areafor it. Thisis done
by putting the length (in bytes) into the accumulator and calling #D4FO (version 1.0) or #D5AB
(version 1.1). Thiswill leave the address of the new string at #D1, #D2. Once you have put the string at
this address, you must finish the subroutine with:

PLA
PLA
JMP #D539 (for version 1.0)
JMP #D5F4 (for version 1.1)
When returning a floating-point number, you exit with the usual RTS instruction.

EXAMPLE: THE INSTR FUNCTION

On some computers you will find the ' INSTR’ function. This searches for a string of characters within
another string, returning its position, if found.

For example, INSTR(*ABCD”,”BC",1) is 2 (the |ast parameter 1 indicates the start position of the
search).

The subroutine of Program 3.2 simulatesthe INSTR function. The function is called by a statement
such as: A=&(“T$,S$,N").

String S$is searched for within string T$, starting at position N. The quotes are used since R can only
take one parameter; this means that you can only use simple variables (such as A$) in the actual

statement.

The listing will work unchanged for version 1.0 owners, but users of version 1.1 ROMs should make
the following adjustments:

9800 JSRDS8AC
981D JSR CF17
982D JSR CF17
983D JSRCF17
9840 JSRD92C
987B JSR D499

To use INSTR, you must first type DOKE #2FC, #9800.

F800: 20 F1 D7 JSR sDTF1

F803: A0 09 LDY #%09
FBOS: BY 33 Q0 LDA SO033,.Y
FB08: 48 PHA

F80%: 86 DEY

FBOA: 10 F9 BFL $9805
980C: AS ET LDA $E%
9BDE: a8 PHA

9BOF: AS EA LDA SEA
8i1r 48 PHA

ML2r A0 01 LDY #s01
981i4: B1 DI LDA (D). Y
PH14: B85 ET STA S$E9
9818r CB INY

28191 Bl DI LA ($D3),Y¥
P81B: 85 EA STA S$EA
981D: 20 BB CE JSR $CEBB
P820: &D 02 LDY #s07
9822: Bt D3 LDA ($D3)_ v
FA24: 99 35 00 STA $003I5,Y
¥g27: B8 DEY

9828: 10 F8 BPL $98B2Z2
FAZA1 20 EZ2 00 JSR SO0OEZ2
82Dt 20 BB CE JSR sSCEBB
FAIe A0 02 LDY #%02
g3y Bl D3 LDA ($DZ),¥
FBT4: 99 IB OO ETA $0038,Y
8371 88 DEY

933@: Lo FB BPL s$9832
F83A: 20 E2 00 JSR $ODEZ
83D: 20 8B CE JSR $CEBBE

F840: 20 71 DB JSR sDE71
FB43: 38 SEC

oB44: a5 35 LDA %35

9844: ES 38 SBC $38
9848: ©5 35 STA %35
984A: E& 35 INC $35
984C: C& 33 DEC %33
984E: a5 33 LDA $33
9850: &5 3B STA $3B
9852: C5 35 CMP %35
o854 : BOD 21 BCS 9877
9856: A9 00 LDA #%00
9858: B85 3IC STA $3C
985A4: A4 3B LDY $3B
9g85C: Bl 3& LDA ($36),Y
985E: A4 3C LDY $3C
9860: D1 39 CMP ($39),Y
9862: DO OF BNE 9873
9864: E& 3B INC $3B
986&: E& 3C INC $3C
FEAH: Ao iC LDA %3C
986A: C5 3B CMP $38
9864C: DO EC BNE $985A
784E: A4 3T LDY 433
9870: CB INY

9871: DO O& BNE $9879
9873: Eé 33 INC $33
9875: DO D7 ENE $9B4E
9877: A0 00 LDY #%00
87 A9 00 LDOA #HEOD
9878: 20 ED D3 JSR $D3ED
987E: &8 PLA

IBTF: BS EA STA $EA
9881: &8 PLA

9882: B85 E9 STA $E9
9884: A0 09 LDY #$09
9a86: &8 PLA

f887: 99 I3 00 STA $0033.Y
988A: B8 DEY

988B: 10 F9 BPL $988&
988D: &0 RTS

988E: EA NOP

988F: EA NDP

9890: EA NOP

Program 3.2 INSTR

3.13 Areal-time clock
Program 3.3 isa short program to give your programs a clock that can return the current time of day.

0810:
084112
04121
0413:
24162
0418:
041EB:
I41C:
Og41F =
0421:
Ga24:
0426
0428:
D42A:
042D;
O42E:
0431
0433:
O435:
Q438:
D&3ZA:
Q43C:
O43F:
0444 :
447
0445z
o448:
O44A:
084C:
O44F =
0451 :
04521
085%5:
0457
245A:
045B:
045C:
O45E :
045601
4535:
0464 ;
4641
o4&£8:
Na&B:
O45F =
Q4 EF
C471:
0ar72:

Program 3.3 Clock

48
18
Fa8
AD
&9
aD
Da
AD
59
BD
ce
DO
AT
8D
18
AD
&9
an
ce
Do
AT
8D
18
AD
o7
ap
ce
DO
AT
8o
1B
AaD
&9
8D
&8
40

"
-

A7
2D
Ca
10
A2
BD
e
CA
10
&)

C4
01
cCa

CS
00
CS

-
“m

32
o0
cS

Cé
01
Cé
2C
20
o0
Cé

c7
01

-
18
OE
00
cC7

cCE
o1
cCg

(4
2
C4

FA
o2
72
30

F7

0z

02

L

02

a2

a4

e
il

4C 12 049

FHA
CLC

LDA
ADC
s5TA
CLD
LDA
ADC
=TA
CMF
BNE
LDA
5TA
CcLC
LDA
ADC
5TA
cCwpP
BNE
LDA
STA
CcLC
LDA
ADC
STA
CMP
ENE
LDA
SThA
CLC
LDA
ADC
ETA
FLA
RTI
LDX
LDA
5Ta
DEX
BFL
LDX
LDA
S5TA
DEX
BFL
RTS
JMFP

$02C4
#%01
$02C4

$02C5
#$00
$02C5
#$3C
FO45A
#5200
FO2CE

F0O2CE
HEO]L
$02C4
#+32C
$045A
#400
$O2C6

$02C7
#E0O1
$02C7
#%18
$0454
#$00
$02C7

$02CH
#&01
£Q2CE

#$04
#%00
$02C4,

$04560
#$02
$0472, X
$0230, X
$0448

$0410

The time can be set up (and read back) using PEEK and POKE from the following locations:
#2C5 Seconds

#2C6 Minutes

#2C7 Hours

#2C8 Days

Location #2C4 is used to store one-hundredth second intervals — but thisis not in a suitable form for
reading.

Owners of version 1.1 ROMs should change the instruction at #46B to STA 24A,X. To start the clock
CALL#45C.

ACCURACY

The clock will stay fairly accurate, except when certain commands are used. The most serious
problems will arise when doing any tape saving or loading. A minor loss of time can happen during any
sound command and when scrolling occurs.

3.14 Relocater program

To complete this chapter, here is a program that allows you to move a machine code program to a
different address (Program 3.4). All 3-byte instructions are modified, where necessary, reflecting the
new start address.

Since a program may reference locations near to itself, but not actually part of the program, the
relocater needs five addresses:

#70, #71 Start address of whole area.
#72#,73 End address of whole area.

#78, 079 Start address of actual program.
#7TA, #7B End address of actual program.
#7C, #7D New start address of program.

The routine can only cope with instructions — it cannot handle data. If your program has imbedded data,
you will have to use the utility in stages.

For example, to move the instruction: 1000 INC 1234 to #2000 (assuming that 1234 is alocation that
will now become 2234), you would need to set up the following addresses:

#70, #71-00 10
#12,#73-34 12
#78, #79—-00 10
#7A, #7B -02 10
#7C, #7/D —-00 20

Theroutineis entered from address #440 and does not have any calls to the ROM.

0474:
0475:
D478:
QA47TA:
O47B:
Q47D:
O47F:
0481:
o485:
o4B5S:
0487 :
0489 :
04B8B:
0480:
O48F :
Q470 :
0492:
0494:
04952
0499

AS
ES
BS
AS
ES
B35
AQ
Bl
1
29
ce?
FO
ce
FO
B1
A2
DD
Fo
CA
10
A2z
DD
FO
CA
10
29
ce
Fo
ca
B1
21
Do
Fo
AD
Bl

CS
FO
90
BO
a8

Bl
C3
J0
AD
AS

7C
78
-

79

83

78
7C

2RISR

F8
OF
08
4D

78
7C
46
44
02
78
71
04
2F
07

78
Fi*)
25
o2
TI

(listing continues)

14

04

CLD

LDA
SBC
SThA
LDA
SBC
SThA
LDY
LDA
5Ta
AND
CHMP

CHF
BEQ
LDA
LDX
CHMP
BELR
DEX

LDX

BCC
LDY
LDA

$7C

$78

$76

$7D

$79

$77
#5500
($78),Y
($7C), Y
#SOF
#$0D
$0483
#E0E
$0483
($78),Y
#E10
$0420, X
$0483

$0452
#+0D
$04Z1,X
$04LC7

FO4460
#EOF
#4508
$04C7

($78),Y
($7C), ¥
$04C7
$04C7
#$02
($78), ¥
$71
$046F
$04BC
$0494

($78),Y
$70
$04BC
4302
$73

O49A:
049C:
049E:
Q4A0:
04A/2:
04A3:
O04Aa5:
04A7:
04A9:
04AB:
O4AD:
O4AE =
DB
0aB2:
04B3:
04BS:
O4B7
04B9:
Q4BA:
O4BC:
04BE:
0400
0402 :
QL=
oaCS:
o4qL 7 :
03C8:
0407
04CA:
O4CC:
O4CE :
O4D0:
a4D2:
a4D35:
04D4:
O4D&:
04D8:
o4DA:
04DC;
DO4DE:
OqECH:
O4E2:
D4E4S =z
O4E&S:
4EB:
O4EA:
O4EC:
O4ED:
O4F Oz

D1
FO
90
BO
g8
aAS
D1

F0
Al
Bl
i8
&5
21

ca
Bl

&5
21

8
BO
AD
B1

21

cB
Bl

1
ca
98
18
&3
85
F0
E&
18
28
&5

=
-

F0
E&
as
C5
FO
BO
Q0
AS
CS
F0
&0
ac
EA

78
04
IC
o7

78
13
21
7B

7&
7C

78
77
JC

OB
01
7e
7C

78
7C

78
78

-
a

79

7C
7C
02
7D
e
7B
04
o8
o7
78
7h
o1

4E 04

CHMP

BCC
BCS
DEY
LDA
CMF
BCC
LDY
L-DA
CLC
ADC
STH
ITNY
LDA
ADC
s5TA
SEC
BCS
DY
LD#A
5TA
INY
LDA
5ThA
INY
TYA
CLC
ADC
5TA
BCC
INC
CLC
TYA
ADC
STA
BCC
INC
LDA
(o, o
BEQ
BCS
BCC
LDA
CMF
BCC
RTS
JHMF
NOF

($78),Y
$04A2
$04BC
$04A9

$72
($78),Y
$04BC
#$01
(£78),Y

$76
($7C), Y

($78),Y
77
($7C), Y

$04C7
#501
($78),Y
($7C), Y

($78), Y
($7C), Y

%78
%78
$04D2
579

$7C
s7C
$04DC
£7D
79
7B
$0O4ESL
$O4EC
$+O4ED
£78
®7A
+04ED

$044E

04F1: EA NOF

04F2: EA MOF
O4F3Z: EA NOF
04F4: EA NOF
C4FS: EA NOF
04Fs&: EA NOFP
04F7: EA NOP
04F8: EA NOF

04203 79 39 DY EC CC 59 4C &C
0428: 20 BY AC BC 19 F9 99 8C
0430: 00 0A OO0 BB CA 4A EA 2A
0438: 6A 40 60 AA BA BA 9A 00

Program 3.4 Relocater program (#420 — #43F and #440 - #4F0)

4. THE KEYBOARD AND CASSETTE SYSTEM

4.1 Keyboard

HARDWARE

The hardware which enables the keyboard to work has already been described in Chapter 1. To
summarize, the keyboard is scanned every 30 ms using port A of the 8912 and port B of the 6522. This
is done by writing to each column and row in the keyboard matrix — identifying just one key at atime.
At any moment there may be any number of keys pressed, but although the automatic scanning routine
only looks for one key (or two, if you count the shift and control keys) it is still possible to look for
multiple keypresses.

USEFUL LOCATIONS

The keyboard routines in ROM |eave behind a number of useful locations.

The most important address is #2DF which contains the ASCII value of the last keypress. This
value is OR’ ed with #80 by the keyboard routine to indicate that the keypress has not been
processed.

‘I"hislocation is subject to delays when the same key is pressed twice because of the autorepeat
feature, so often you will want a faster access to the keyboard. Location 4208 is set to a unique
value when akey is pressed, but there is no direct correspondence between this value and the ASCII
sequence — you will need to use agood deal of trial and error. The value here is a combination of
two 3-bit column and row numbers.

For example, when ‘A’ is pressed (in both upper-case and lowercase) you will find that location
4208 contains #AE.

The two shift keys and the control key are not recorded in location #208, but instead at 4209. This
makes it possible to differentiate between the left and right shift keys — useful for games, etc.

USEFUL ROM ADDRESSES

When fast key action is not required, a machine code program can quickly get the ASCII code of the
last keypress with one of two calls:

47

1. Toread akey without waiting, returning the ASCII code in the accumulator, call subroutine
#E905 (version 1.0) or #EB78 (version 1.1). Thisisidentical to using KEY$in BASIC.

2. Towait for akey to be pressed (i.e, like GET in BASIC), call either #C5F8 (version 1.0) or
#C5E8 (version 1.1).

INDEPENDENT KEYPRESS ROUTINE

The normal method of detecting keypressesis dow and inefficient, since the whole keyboard must be
scanned 33 times a second and interrupts must be running for this to happen.

More importantly, the limitation of being able to read only one key at atime can be areal hurdle when
writing a game program.

Program 4.1 shows a short subroutine that examines only one key and sets the zero flag to reflect the
state of the key. In other words, the zero flag is set when the key is not pressed and clear when the key
is pressed.

4000 o8B FHF

Q0021 1 78 SEI

4002 48 FHA

4003 A9 CQE LDA #%0E

4005: 20 IS FS JSR $F53I5
408 : &8 FLA

400%9: 09 BA ORA #$EBB

400B: 8D 0D 0= 5TA $0300
400FE : AZ D4 LDX #%04

4010: CA. DEX

4011: DO FD BNE $401¢0
401Z%: AD OO 03 LDA $0300
4014 29 08 AND #%08

4018: AAH TAX

4019 28 PLP

401A: 84 TA

4018 &0 RTS

Program 4.1 Read keyboard subroutine

This subroutine can be used for any number of keys simultaneoudly. It requires two registersto be set
up: the accumulator should contain the row number (0 —7) and the X register should be set to the
column number. The column number is one bit cleared in a byte containing OFF, i.e., #7F, #BF, #DF,
#EF, #F7, #FB, g FD, or #FE. Aswith location #208, the required values do not fall in arecognizable
pattern — Table 4.1 givesthe A and X values for each possible key. Version 1.1 users must change the
instruction at #4005 to JSR #F590.

Table 4.1 Keypressvalues

Key required Accumulator X register
123 020 DF BF 7F
456 202 F7 FB FD
789 073 FE FEFD
0-= 737 FB F7 7F

\ESCQ 311 BF DF BF
WER 661 TFF7FB
TYU 165 FD FE FE
IOP 555 FD FB F7
[1] DEL 555 7F BF DF
CTRLAS 266 EF DF BF
DFG 116 TFF7FB
HJK 613 FD FE FE
L;“ 733 FD FB 7F
RETURN 7 DF

SHIFT (LEFT) 4 EF
ZXC 202 DF BF 7F
VBN 020 F7 FB FD

M comma period 244 FE FD FB
[SHIFT (RIGHT) 77 F7 EF
LEFT ARROW 4 DF
DOWN ARROW 4 BF
SPACE 4 FE
UP ARROW 4 F7
RIGHT ARROW 4 7F

4.2 Cassette input/output

This section will describe the various ways in which the cassette system can be used.

There are three programs described in this part of the chapter, each giving an extrafacility that can be
used from BASIC.

Theroutinesin ROM that allow cassette 1/0 are neatly structured so that saving and loading can be
done either:

1. Asacomplete section of memory.
2. Onebyteat atime.
3. One hit at atime.

The third option is not used in this chapter; most applications are only concerned with whole bytes.
However, Sec. 9. | — speech synthesis — shows how bits can be read from the cassette hardware.

Saving and loading bytesis often more useful than saving alarge area since you can have a free hand
asto the exact format of your data on tape.

This is one subject where the two versions of ROM differ greatly: both the subroutine addresses and
the usage of page 0 and page 2 are atered.

Generally, version 1.1. uses page 2 to store filenames and flags, whereas version 1.0 uses the BASIC
input buffer area— g3F to #67.

4.3 Saving an area of memory

The sequence of events when saving a block of memory (remember that a BASIC program isjust a
block of memory) is:

1. Disable interrupts and change the 6522 into cassette mode.
2. Print the message ‘' SAVING' and the filename on the top line of
the screen.

3. Save aheader record, composed of:
(a) 259 occurrences of #16 (thisis the actual ‘header’).
(b) The value #24 to indicate the start of the record.
(c) For version 1.0 —#5E to #66 — or for version 1.1 —#2A0 to #2B0. Thisinformation is saved
backwards and includes the start and end addresses and other flags.
(d) A filename, ending with #0 —this is either #35 onwards, for version 1.0, or #27F onwards,
for version 1.1.
4. Savethe block of memory, byte by byte.
5. Re-enable interrupts and reset the 6522 back to its normal mode.

LOCATIONSUSED WHEN SAVING
From the previous paragraph, you will notice that all the important information is saved as a 9-byte
block of data. Here is how version 1.0 usesiits flags and buffers:
#5F, #60 Start address
#61, #62 End address.

#63 Autoload flag — set to zero if no autoload required.
#64 Machine code of BASIC — set to zero for BASIC.
#67 Speed. Zero means fast, one means slow.

#35 — #44 Filename, terminated by #00.

In version 1.1, the same flags are stored as follows:
#2A9, #2AA Start address

#2AB, #2AC End address.

#2AD Autoload flag — zero means no autoload.

#2AE Machine code flag — set to zero if BASIC.
#24D Speed. Zero means fast, one means slow,
#27F — #28E Filename, terminated with zero.

Although the addresses of these flags differ between ROM versions they arein an identical format.
This allows programs saved to tape by one type of machine to work on a different type.

Note that the machine code and autoload flags will only be recognized by the CLOAD”” command — if
you use the subroutines as described in this chapter, they will be ignored.

Another point is that the speed flag is used by the routine that saves individual bytes. If unchanged, the
speed will remain the same as the previous cassette operation.

SUBROUTINES REQUIRED

In order to save a block of memory, having set up the speed, start address, etc., you must call a series of
subroutines:

1. For version 1.0:
JSR EB6CA (interrupts off)

JSR E57B (save)
JSR E804 (interrupts on)

2. For version 1.1:

JSR E76A (interrupts off)

JSR E585 (print ‘saving’)

JSR E607 (save header record)
JSR EG2E (save area of memory)
JSR E93D (interrupts on)

4.4 Loading an area of memory

Loading back datais basically the reverse of saving, except that:
I. Onversion 1.1, theloading program may be just verifying the tape against memory.

2. Thefilename has to be matched against each filename on tape.

The sequence of events when loading (or verifying) is:

1. Disable interrupts and ater the 6522 ready for cassette 1/0.

2. Print the message ‘ searching’

3. Lock onto the file header, until a sequence of three #16s is detected.
4. Wait until #24 is detected and then read in the header record.

5. Store the filename coming in.

6. If the filename on the tape is different from the required name then go back to sequence 3. (Version
1.1 also prints ‘FOUND XX'.)

7. Change message to ‘loading’ (or ‘verifying’).
8. Load or verify the file on tape.
9. Re-enable interrupts, etc.

LOCATIONS USED

See Sec. 4.3 for the important locations — these are the same when loading. When loading, it is not
necessary to provide the information that will be loaded in from the header record. The essential details
are

Version 1.0: #67 —the tape speed (zero when fast, one when slow).
#35 — #44 — the filename, terminated by #00.
Version 1.1: #24D — tape speed (zero when fast, one when slow).

#27F — #28E —the filename, terminated by #00.
#25B — the verify flag — set to zero for load, one for verify.
#25A —the join flag — set to zero for anormal load.

On version 1.1, the count of verify errorsis stored at #25C,D. On both versions an error flag is kept
at #2B1 —this indicates errors in loading any byte. Location @2B1 will contain zero when there are
No errors.

Note that when you use a series of subroutines as described in this chapter, you will not get
messages such as ‘errors found’ or the count of verify errors.

Oneimprovement made in version 1.1 isthat location #21F is checked before any message is
displayed on the top line — this prevents the HIRES screen from being overwritten.

The filename on tape is stored at #49 to #56 (version 1.0) or #293 to #2A2 (version 1.1).

SUBROUTINES REQUIRED

In order to load atape file, call the following subroutines: 1. Version 1.0:

JSR E6CA (disable interrupts, etc.)
JSR E4A8 (search and 10ad)
JSR E804 (enable interrupts, etc.)

2. Version 1.1:

JSR E76A (disable interrupts, etc.)
JSR E57D (print ‘searching’ message)
JSR E4AC (find file)

JSR E59B (print ‘loading’)

JSR E4EOQ (load file, or verify)

JSR E93D (enable interrupts)

Note that these subroutines are not exactly the same asa CLOAD command. As mentioned before,
no error messages are printed and, in addition to this, the program will not autorun.

On version 1.1, the routine that prints a message on the top lineis patched via ajump at #241. This
may be (carefully!) atered in order to add your own processing at either the ‘ search’ or the ‘load’
phase.

Y et afurther important difference between the two ROM versions exists when a BASIC program is
loaded. On version 1.1 a subroutine is called which relinks all the lines in the program. This
prevents problems arising when the links have been corrupted during loading, and alows the ‘join’
facility to create an executable program. Thisis not done on version 1.0, so be warned that if you
deliberately upset the links (one reason would be to stop ‘LIST’ from working) you will find that
version 1.1 ROMs correct your vandalism! If you are mixing machine code with BASIC, be sureto
end your BASIC program with alink between #00 and #FF (see Chapter 2), or you may find some
of your machine code gets corrupted.

SUMMARY OF ROM SUBROUTINES

In order for you to save and load data, byte by byte, hereisalist of all important addresses. Note that in
order to do any cassette 1/0, you must first call the subroutine which disables interrupts. For version 1.0
thisis WEGBCA and for version 1.1 it is#E76A. When you have finished your cassette 1/0, you should

call #E804 (version 1.0) or #£93D (version 1.1).

1.

Version 1.0:

Clear top line #£563

Print message on top line (Addressed by A=low,Y =high, X=start position) #F436
Find header #E696

Read one byte into accumulator #£630

Output header #E6BA

Output byte from the accumul ator #E5C6

Version 1.1;

Clear top line #E5F5

Print message on top line (addressed by A=low, Y =high, at position X) #F865
Find header #E735

Read one byte into accumulator #E6C9

Output header #E75A

Output byte from accumulator #E65E

Note that the ‘header’ referred to above is just the sequence of 259 lots of * #16' —not the header

record.

The following examples will help with an understanding of the
tape subroutines.

4.5 A verify facility for version 1.0

B400: 20 CA E& JSR $E6CA
B403: 20 &3 ES JSR $ES63
B40&: AT 03I LDA #%$03
B408: AO ES LDY #$ES
B40A: 20 7& ES JSR $ES76
B40OD: 20 96 E6 JSR $E496
B410: 20 30 Eé& JSR $E&30
B413: C9 24 CMP #324
B415: DO F9 BNE $B410
B417: AZ 09 LDX #$09
B419: 20 30 Eé JSR $E&30
B41C: 95 SD STa $5D,X
B41E: CA DEX

B41F: DO F8 BNE $B419
B421: 20 30 €6 JSR $E&30
B424: FO 0S5 BER $B4ZB
B4Z&6: 95 49 STA $49,X
B428: E8 INX

B429: DO F& BNE $B421
B4ZB: 20 &3 ES JSR $ES63
B4ZE: A9 70 LDA #$70
B430: AO P4 LDY #$B4
B432: 20 76 ES JSR $ES76
B435: AS SF LDA SS5F
B4S7: A4 &0 LDY $&0
B43Z9: 85 33 STA %33
B43B: B4 34 STY $34
B43D: A0 00 LDY #%$00
BA3F; 20 30 Eé& JSR $E&30
Ba42: D1 33 CMP ($33),Y
BEs44: FO t1& BEQ $BaSC
B4d&: AS 33 LDA $33
B448: 85 00 STA $00
B44A: A5 34 LDA $34
B44C: 85 01 STA %01
B44E: 20 &3 ES JSR $ES&3
B4S51: A% 7A LDA #$7A
B453: AO B4 LDY #$B4
BASS: 20 7& ES JSR $ES76
B4S8: A4C &4 B4 JMP $B4s54
BASB: &0 RTS

B45C: 20 S4 ES JSR $ESS4
B4SF: 90 DE BCC $B43F

B4&61: 20 43 ES JSR $ES&3

o
&

Program 4.2 (continues)

Bas4: 20 O7 EB JSR SEBO7

B457: AS &1 LDA $4&1
B449: BS 9C S5Ta s$9C
B4&B: AS &2 LDA $&2
B4asD: 85 9D STA $9D
B4sF: &O RTS
B470: V 56 E 45 R 52 I 49
B474: F 46 ¥ 59 [49 N 4E
B478: G 47 . OO E 45 R S2
B47C: R S2 0 4F R 52 5 53

B4go: . 00O
Program 4.2 Verify for version 1.0 (#B400 — #B46F and #B470 — #B480)

Owners of version 1.1 will not need this routine (Program 4.2), as VERIFY is one of the features of the
updated ROM.

To use this program, POKE #67 with zero or one (fast or low tape speed) and CALL #B400.

If any differences are found, the ‘errors found’ message is printed, and the program finishes. This will
happen immediately after the error is found, unlike the version 1.1 verify routine which waits until the
end. Another difference is that the program here leaves the address of the error at #0,1, so that further
investigation is possible.

Note that you are able to load this program on top of an existing BASIC program because although the
end-of-BASIC pointer (#9C) is corrupted, the actual verify routine will subsequently correct it.

Y ou will notice an unfamiliar address — #E807. This is the same as #E804 (which enables interrupts,
etc.), except that the subroutine is called at a later address in order to prevent the top line being cleared.

46 CLOAD with an exit

Oneirritation when loading a program is that there isno easy way to stop a CLOAD. Control-C does
not work, of course (the keyboard is not scanned during cassette 1/0), and the only resort is the * Reset

button’,

While thereis ssimply not enough time between loading each byte to scan the whole keyboard, it is
possible to examine one particular key.

The following program loads the next program it finds, but will exit if ‘I’ is pressed. We use the
keyboard routine discussed in the first part of this chapter, but since the 6522 isin cassette mode we
must make a temporary alteration to port B. Before looking for a keypress, one bit in port B is set to be
input; after looking at the key, port B is set back to output.

There are two different versions of the program, according to
what version of ROM is used.

VERSION 1.0 PROGRAM

To run this program (Program 4.3), set location #67 to the tape
speed (zero for fast, one for slow) and call #B49B.

B40OO: AT F7 LDA H#sF7
Ba02: BD 02 03 STa $0302
B40s5: 78 SEI

B40&: A2 FD LDX #$FD
B40B: A9 0OE LDA #SOE
B40A: 20 33 FS5 JSR $F535
B40D: A9 FD LDA #$FD
B4OF: 9D 00 02 STAa s$03200
B412: A0 04 LDY #s$04
B414: 88 DEY

B415: DO FD BNE sB414
B417: AD 00 03 LDA $0300
B41a: 29 08B AND #%08
B41C: OB FHF

B41D: A? FF LDA #S$FF
B4iF: BD 02 03 STA 0302
B422: 28 PLP

B423: &0 RTS

B424: Bb& 36 STX 36
B42&4c 84 37 STY 437
BazB: 20 30 Eé& JSR $E<0
B4ZB: 48 PHA

B42C: 20 00 B4 JSR $B400
B42F: FO 02 BEQ $BAIZ
B431: &8 PLA

B4ZZ2: &B PLA

B433: AL 36 LDX %34
B435: A4 37 LDY %37
B4X7: &B PLA

B438: &0 RTS

B43%: 20 CA E& JSR $E&CA
B43C: A9 00 LDA #%00
B4ZE: 85 35 ST %15
B440: 20 43 ES JSR S$ES&F
BA443Z: A9 0 LDAa #$03
Ba45: A0 ES LDY #$ES
B447: 20 74 ES JSR $ES7&
Baga: 20 %& E& JS5R SE&TS
Ba4D: 20 24 B4 JSR $B424
BASO0: C7 24 CMF #3%24
B452: DO F9 BNE $B44D

. : [L 22
BAS4: AZ 09 LDX #$09 Program 4.3 (continue:

BaSh: 20 24 B4 JSR $B4Z4
BAS9: 3 3D STA 5D, X
B45B: CAa DEX

B45LC: DO F8 BNE s$B45s&
B45E:: 20 24 B4 JSR $B4Z24
B441: FO OS5 BEQ s$B4a8
B4&63: 9% 49 STA %49, X
B445: EB INX

Ba&a: D0 Fa BMNE $B45SE
B448: 95 49 STA s49.X
Ba&A: 20 FO E& JSR SE&FO
B4&6D: BA TXA

Ba&E:: Do Do ENE 3B440D
B470: 20 &% ES JSR SESAZ
B473: A9 12 LDA #%12
BA47S: a0 LDY #%ES
Ba477: 20 F& ES JER $ES7S
B47aA: 20 &E ES JSR SESAE
B47D: EA NOP

B47E: EA NOF

BA47F: ES EA SBC sSEA
B4B1: EA NOP

B482: EA NDP

BAB3: AS 5F LDAa =5F
BA8S5: Ad4 &0 LDY &0
BABT: 85 33 STA %I
B4BY': B4 34 STY s34
B4BB: AQ 00 LDY #%00
Ba4BD: 20 24 Ba JSR =B424
B490: EA NOP

B4%91: BO 4% BCS sB4Ds
B493: 91 33 STA {($33),Y
B495: 20 34 ES JSR S$ESS4
B498: 20 F3 BCC s$B4aBD
B49A: &0 RTS

Ba49B: 20 39 B4 JSR $Baz9
BASE: 20 04 EB JSR SEB04
B4Al: &0 RTS

B4AZ: EA NOP

BaAa3: EA NOFP

B4A4: EA NOP

B4AS: ER NOP

Banas: EA NOP

Baa7: EA NOP

B4AB: EA NOF

B4AT: EA NOF

BaaA: EA NOF

B4AEB: EA NOF

Program 4.3 Version 1.0 CLOAD with exit

it

VERSION 1.1 PROGRAM

To run this program (Program 4.4), set location #24D to the tape
speed (zero for fast, one for slow) and call #B4A9.

B400Q: AT F7 LDA #SF7
B402Z: 8D 02 03 STA %0302
B405: 78 SE1

B40&: A2 FD LDX #$FD
B408: A9 OE LDA #S$S0E
B4CA: 20 90 FS5 JdS5R $F390
B40OD: A? FD LDA #$FD
B40OoF: BD 00 03 STA $0300
B41Z2: A0 04 LDY #304
B414: 88 DEY

B415: DO FD BNE s$B414
B417: AD 00 03 LDA %0300
B4iAa: 29 08 AND #308
B41C: 08 PHP

B41D: A9 FF LDA #S$FF
B41F: 8D 02 03 STA $0302
B42Z2: 28 FLP

B423: &0 RTS

B4Z24: B& 34 STX %34
BAZ2&: B4 37 STY $=Z7
B428: 20 C? E& JSR $SELCT
BaZ2B: 48 PHA

B4ZC: 20 O0 B4 JSR $B400
B42F: FO 02 BER $B433
B431: &8 PLA

B432: &B PLA

B433: A& 34 LDX $3&6
B43Z5: A4 37 LDY %37
BaAZ7: &B FLA

BaZ8: &O RTS

B439: AT 00 LDA #3$00

Ba3B: 8D 7F 02 STA $027F
B43E: SB 02 5TA $025B
Ba41: E7 JER $E74A
Ba444: 20 7D ES JSR $E57D

88
;3

BA4A4T: 20 X5 E7 JSR $EVIS

B44A: 20 24 B4 JSR $EB424

B44D: C9 24 CMP #%24

B44F: DO F9 BNE $B44A

BAS1: A2 09 LDX #$09

BAS3: 20 24 B4 JSR $B424

BAS&: 9D A7 02 STA $02A7, X

BAS9: CA DEX

B4SA: DO E7 BNE $B453

B4SC: 20 24 B4 JSR $B424 Program 4.4 (continues)

B43F: FO 0D BEQ $BasE
B4as1: 9D 93 02 STA $0293,X
Bas4a: EB INX

B465: EO 10 CPX #%10
B4&67: DO F3 BNE $BA4ASC
Ba4&F: 20 24 B4 JSR $B424
Ba4C: DO FB BNE $B44%9
B4&E: 9D 93 02 STA $0293,X
B471: 20 94 ES JSR S$ES94
BAa74: 20 90 E7 JSR SET7%0
B477: BA TXA

Ba78: DO CD BNE $B447
B47A: EA NOP

Ba7B: 20 9B ES JSR SES9B
B47E: aAD A% 02 LDA $02A%9
BE4ELl: AC AA 02 LDY S$O02AA
Baga: 835 33 sSTA %33
B48s: B4 34 STY %34
Bage: A0 0O LDY #%00
BagA: 20 24 B4 JSR $B42X4
B48D: &AE 3B 02 LDX $025B
B4gD: DO O3 BNE $B497
B492: 91 33 STA ($33),Y

B4%4: 4C AT B4 JMF $B4A3

B4?7: D1 33 CMF ($33),Y
B499: FO 08 BEQ $B4A3
B49B: EE SC 02 INC #025C
B49E: DO 03 BNE $£B4A3
B4AC: EE 3D 02 INC $025D
B4AZ: 20 &C ES JSR s$ES&C
BaA&: 90 E2 BCC =B48A
B4apB: &O RTS

B4A%: 20 39 B4 JSR $B439
B4AC: 20 3D E9 JSR $E93D
BaaF: &0 RTS

B4BO: EA NOFP

B4Bl: EA NOF

B4BZ: EA MNOF

B4B3: EA NOF

E4B4: EA NOF

B4BS: EA NOF

B4B&: EA NOF

B4AB7: EA NOF

B4BB: EA NOF

B4B?: EA NOFP

Program 4.4 Version 1.1 CLOAD with exit

4.7 Data saving and loading

The version 1.1 ROM gives the facility to save and recall complete dataarrays. A similar routine is
available to version 1.0 owners, published in Oric Owner magazine.

However, dealing with whole arraysis not always convenient, and one annoying feature is the long
headers saved before each record. As has been discussed earlier, 259 bytes are saved to form the
header. The purpose of thisisto allow time between the cassette recorder stopping and starting, but at
slow speed this amountsto 5 seconds!

The length of these headers has been greatly reduced in the following subroutines, and also depends on
the tape speed. It is assumed that you are not using the cassette relay — if you are, then you may need to
increase the length of the header at #B307.

The following routines can be accessed from BASIC viathe‘!” and ‘&’ extension commands.
SAVING DATA

Data are saved using the! command. A short header is written first, followed by the actual data. For
example, ! "START” would write arecord containing the word ‘' START’ onto tape.

When a number is written out, it is saved as a floating-point number. A string is saved with the length
first, followed by each character of the string.

LOADING DATA

To load back data you use the & function. This returns the next record from tape. For example, A$ = &
(O) (the argument in brackets can be any numeric expression) would read the next string on tape into
AS.

When loading data, it isimportant that the correct type of dataisrecognized; if you get the type wrong,
you will get aTYPE MISMATCH error.

At fast speed, you must not put too much processing between the retrieval of each record —unless a
similar delay was incurred when the data were saved.

There is a short header recorded with each record on tape — this gives a small amount of leeway
between each record, but it is advisable to disconnect the REMOTE jack socket as the cassette should
not be made to start and stop continually.

EXAMPLE

The following BASIC program (Program 4.5) shows how to use the data saving routines. Remember
that it is only a guide — you can save and recall both strings and numbers.

Note the two DOKE commandsin line 30 — these set up the addresses for the extension commands to
work.

10 REM DATA SAVING EXAMPLE

20 REM SET UFP EXTENSION COMMAND ADDRESSES
30 DDEE#ZFS, #BT00: DOEKE#RZFC, #B3ESAO

40 HIMEMHSTFF

S0 DIMAS(100)

&0 FORZ=1TO100D: A (Z)=STRE(I#*7) :NEXT?Z

70 REM SAVE A HEADER

g0 !'"START™

F0 FORZI=1TD100

100 'as(z)

110 NEXTZ

120 CLS:PRINT"LOADING BaCck™

130 REPEAT:UNTILZ(Q)="START"

140 FORZI=1TO100: IFA%(Z)=&{0) THENNEXTZ: END
130 PRINT"ERROR"

Program 4.5 BASIC example of data saving

PROGRAM LISTINGS

There are two versions, one for each version of ROM. Y ou will probably want to code the routines into
DATA statements, so that they can become part of a BASIC program. Y ou may find Chapter 3 useful
in understanding how the subroutines work.

1. The program for version 1.0 ROMsis listed in Program 4.6.

B300: 20 8B CE JSR $CEBE
B303: 20 CA Eb& JSR SE&CA

B30&: A9 08 LDA #$08
B2I0B: AL &7 LDX $&7
B30A: EA NOF

Program 4.8 (continues)

BIOE:
B30D:
B3IOE:
BIOF:
B310:
B312:
B315:
B316:
B31B:
BX1A:
B31D:
BI20:
B323:
BI24:
B32&:
B32%:
B3ZE:
BI2D:
B3I2F:
B332:
B335:
B334:
B338:
B339:
B33B:
B33D:
B340:
Bi41:
B3Z43:
BI45:
BZ48:
B34A:

BI4C:

233383888

L

156
c&

FB
24
Cé&
24
oq

28

C&

28

oC

Do
C&

o2

DO

8 2 8 o

D>
o8

ES

ES
B3
EB

ES

00
ES

ES

BNE
ASL
ASL
TAX
LDA
JSR
DEX
BME
LDA
JSR
JSR
JSK
RTS
LDA
JSR
LDA
BME
LDY
LDA
JSR

RTS
LDY
LDA
SThA

BFL
LDA
JSR
LDY
CPY
BEQ

$BIOF

#el1b
SESCE

$BI10
#s24

$ESCSH
$BI24
$EB04

$28
$ESCS
$28
$B3I3Z9
HE05
$00DO, Y
$ESCE

$B32F

#302
($D3), Y
$00D0, Y

$B33B
$DO
$ESCs
#3300
SDO
S$BISL

B34E: Bl
B3S™M 20
BI5Z: Ca8
B3IS4: DO
B356: 20
B3579:

92338

B3a0:
BI&Ts
BEZ&65: DO
EI&7: 20
LA B3
BEZ&C: DO
BiaE: AD
BI70: 20
B373: 9%
BZ74: B8
B377: 10
BI7?: 20
B37C: &0
B37D: 20
BIB0: 85
B38Z: 20
B3835: Al
BZ87: Ca
BI89: Fo
BI8B:

BI9T: &8

D1

F4
12

cCA
&

24
Fe
30
26
OF
05
30

Fr
04

30
Do
Fo
£}
DO
o8
10
D1

F4
04

ES

o7

Es

E&
E&

E&

Eé&

EB

E&

Da

E&

BEF8: 4C 39 DS

B3¥B: EA

JHF
NOFP

PLA

LGS 801 .Y
JSR $ESCs
INY
BNE $B34A
JSR sD712
RTS
JS5R SE&CA
JSR $E&T6
JSR SE&ZO
CMF #3524
BNE $E3&0
JER SE&TO
5TA <28
BNE $B3I7D
LDY #$035
JSR $E&30
STA $O00DO,Y
DEY
BPL $B370
JSR SEBO4
RTS
JSR SEA3D
STA $DO
JSR SD4FO
LDY #$00
CPY $DO
BER $B3X93
JS5R $E&30
STA ($D1),Y
INY
BNE 3B387
JSR SEB04
FLA

sD539

Program 4.6 Version 1.0 daia saving

2. The program for version 1.1 ROMs is listed in Program 4.7.

B300: 20 17 CF JSR $CF17
B303: 20 &A EY JSR $ETLA

B304: AT 08 LDA #%08
B3Z0B: AE 4D 02 LDX s024D
B3IOB: DO 02 EHE %B30F
B30D: OA ASL
B30QE: OA ASL
E20F: AA TAX
B31D: AT & LODA #¥1&

B312: 20 5E E& JSR $E&TE

BE15: CA DEX
BX1&6: DM FB BNE S$E310
BEigB: AT 24 LA #$24

B31Az 24 SE Eb JSR $E&ASE
B31D: 20 24 BI JER SB3224

B3Z0: 20 3D ET JER SETID
B3EZ23: &0 RTS

BXIZ4: AS I8 LA %28
BZZ&4: Z0 BE E& JSR SELTE
BIZ29: AS 78 LDA %28
B3ZB: DO OC BNE $B3I39
BZZD: AD 05 LDY #EC5

BIZF: BY Do oo LIA $O0Do, Y
BITZ2: 20 SE £5 JS5R SE&TE
B3Zo: 88 DEY

BZZ&: 10 F7 BFL SE37F
338: &0 RTS Program 4.7 (continues)

BF339:
B33B:
B3I3ID:
B340:
B3Z41:
B347Z:
BE345:
B348:
234A:
B34C:
B34E:

B353:
B354:
B3S56:
B35%:
B3I5SA:
B335D:
B360:
B3&3:
BI&S5:
B3&7:
BI&A:
B3&C:
BILE:
B370:
B373:
B374:
B3I77:
B379:
B37C:
BI7D:
BI8O:

BB 8 QI8N EIEBEBRIISEESE I

mw NN = O 4 N D O
t o o o O O a4 o O Q

g8 mM8a 8 8&S

m =

g 2

SBIINITAS

05
ce

F?
zD

c9e

E&

E&

D7

E7

E&

E&

E&
Lo 0]

E?

E&

LDY
LDA
S5TA

LDA
JSR
LDY
CPY

LDA
JSR
INY

JSR
RTS

RTS
JSR
8TA

#$02
(sD3),Y
$00D0, Y

$SB3I3B
$DO
$SELSE
#%00
DO
$B354
($D1),Y
$E&SE

$B34A
$D7CD

SE7&A
$E735

#s24
$B3&60

%28
$B3I7D
#3005
$EALCY
$O0DO, Y

$B370
$SE93D

$SE&CT
$DO

BIg8Z: 20 AB DS JSR $DSAB
B385: A0 00 LDY #$00
BZ87: C4 DO CPY DO
Biev: FoO 08 BEQ $B39Z

BIBB: 20 C? E& JSR SELCT

B3BE: %1 D1 STA ($D1),Y
B3%0: C8 INY

B391: DO Fa BNE S$E387
B393: 20 3D E9 JSR $EFID
B394: &8 PLA

B3I97: &8B FLA

B3I98: 4L F4 DS JMP $DSF4
BXI9B: EA NOF

B39C: EA NOP

Program 4.7 Version 1.1 data saving

EXPLANATION OF SAVING DATA -THE! COMMAND

Note that the entry addresses are the same for version 1.0 and version 1.1 ROMs, athough many of the
subroutine calls are different.

At #B300, thefirst step isto call the formula evaluation subroutine. This reads in whatever follows
the ! command.

At # B303, the 6522 is set up for cassette handling and interrupts are disabled.

Depending on the tape speed, either 8 (for ow speed) or 32 (for fast speed) bytes of header are
written to tape.

To indicate an end to the header, #24 is written to tape.

At #B324, thefirst byte saved is the type indicator at #28. This will have been set to #0 if a number
followed the! command or #FF if a string was processed.

For a number, the floating-point accumulator at #DO to #D5 is saved on tape, in reverse order.

For a string, the length is output, followed by each byte of the string itself.

In order to release the temporary string created by the formula evaluation routine a special ROM
subroutine is called at #8356

At #B320, the subroutine to reset the 6522 is called, restarting clocks, enabling interrupts, etc.

EXPLANATION OF LOADING DATA — THE ‘&’ COMMAND

1
2.

3.

At #B35A, the 6522 is switched into cassette mode, with interrupts disabled, etc

Following this, a subroutine is called in order to latch on to the small header coming in. Once it has
established that it is reading the header, it will return.

At #B360, the routine waits until the header finishes; one- #24 has been received, the actual datais
loaded.

Therecall of data follows the same order as the save subroutine, so the first item encountered is the
type of data flag. Thisis stored into @28 and is used to indicate which type of data is subsequently
read.

. For anumber, the data are stored back into the floating-point accumulator at #DO to gD5.
. For strings, the length is read, and then a subroutine (called at #B382) allocates the required

amount of string space. The address of this areais stored at #D1,#D2 by this ROM sub- routine.

7. Finadly, the 6522 isreset, interrupts are enabled again, and the subroutine comes to an end with
either: (a) the RTSinstruction (for anumber) (b) ajump to a special ROM address, after removing
the top return address on the stack. This jump (at #B398) is different for each ROM version.

4.8 Conclusions

The intention of this chapter was to show how versatile the Oric’ s tape system can be. Y ou are not
limited to saving and loading in afixed way, but can devise your own file organization on tape.
Also, you will seethat it is possible to do extra processing between reading each byte. While your
program is loading, why not make the colours on your screen slowly change, or move a message
around? There are other tape routinesin this book — see the Merge program in Chapter 8 and the
speech synthesisideain Chapter 9.

5 THE ORIC ROM IN DETAIL

5.1 Introduction

The purpose of this chapter isto provide alist of al important ROM addresses. In addition to this, the
use of the first three pages of memory is analysed in depth.

Many of the important subroutines are explained elsewhere in this book so only brief descriptions are
provided here.

Where aROM address is given you will find the version 1.0 presented first, followed by the version 1.1
address in parenthesis.

5.2 Use of page 0 memory

Any unspecified locations can be assumed to be used by the ROM but to be of no significance.
#00 —#0B — Unused by BASIC.

#10 —#11 — Address of current HIRES position.

#12 —#13 — Address of start of current line (in TEXT mode).

#14 — #15 — Used by the 8912 register load subroutine.

#18 — #19 — Used to point to the start of error messages.

#1A —#C — Contains a jump to the routine which prints ‘ Ready’.

#1F —#20 — Address of last PLOT position.

#21 — #23 — Contains the DEF USR jump.

#28 — The type of data which resulted from formula evaluation; 0 means numeric, #FF means a string.
#29 — A flag that indicates whether the last variable used was an integer.

#2A — A flag which isused in severa places.

#33 —#34 — Various uses, but often used to store aline number that is being located.

#35 —#383 — The BASIC input buffer. Thisis used to store anything that is typed, including immediate
commands and INPUT data (which explains why an immediate command cannot use INPUT). This
areaisalso used in version 1.0 during cassette operations — see Chapter 4.

#86 — Address of last temporary string.

#38 —#90 — A table of temporary strings.

#9A —#9B — Start of BASIC pointer.

#9C —#9D — Start of variables pointer.

#9E — #9F — Start of arrays pointer.

#A0 —#A1—End of arrays pointer.

#A2 —#A3 — Pointer to next free string space.

#A6 —#A7 — Highest available memory location available to BASIC.
#A8 —#A9 — Current line number (read-only).

#AA —#AB - The current line number — saved for error messages.
#AC —#AD- Address of the start of the current instruction — 1.

#AE —#AF — Current DATA line number — used only when printing error messy ges. Altering this
location does not change the READ sequence.

#BO — #B1 — The address of the next DATA item — 1. It isthis address that one must modify in order
to change the data accessed by the next READ command.

#B4 — #B5 — The identity of the last variable used.
#D0 —#D5 — The main floating-point accumul ator.
#D8 —#DD — The second accumul ator.

#E2 — #E7 — The get-character routine. This part increments the pointer at #£9, #EA and drops into
address #E8.

#E8 — #F9 — The second part of the get-character routine. This section loads the next character,
according to location #E9,#EA.

#FA — #FE — The current random number is stored here as a floating-point number.

5.3 Use of page 1

#100 —#10F — Used as atemporary area containing the ASCI| string of characters whenever afloating-
point number is converted. Thisis used for commands like PRINT and STR$.

#110 — #1FF — Used as a normal 6502 stack area (although it is occasionally pruned by non-standard
methods).

USESOF THE STACK

Obvioudy the ROM makes extensive use of the stack for JSR commands, etc., but some BASIC
commands can generate extra entries on the stack:

1. The ‘FOR’ command generates 18 bytes on the stack. From low address to high address these are:
1 byte containing the ' FOR’ token —#8D.
2 bytes pointing to the FOR variable.
5 bytes containing the STEP value (as a floating-point number).
1 byte indicating the sign of the step (either 1 or #FF).

5 bytes containing the upper limit in floating-point format. Note that the lower limit will have been
stored in the variable being used, so this need not be saved.

2 bytes containing the line number of the FOR command.

2 bytes containir.g the address of the statement which follows the FOR instruction.

2. The‘GOSUB’ command is somewhat more economical: it only needs 5 bytes. From low to high
addresses these are;

1 byte equal to #9B”’ pthe token for ‘GOSUB’).
2 bytes giving the line number of the GOSUB command.
2 bytes giving the address of the character which follows the GOSUB command.

3. 'REPEAT’ followsasimilar format (again, these are listed from low addressto high
address):

1 byte containing the token #3B —‘REPEAT".
2 bytes equal to the line number of the REPEAT.

2 bytes giving the address of the byte which follows the REPEAT command.

The formula evaluation subroutine keeps intermediate results on the stack. Thisis done because
arithmetic operations have to be done in a strict order of priority. From most important to least

important, the operators are:

(a) Parenthesis—e.g., 4*(3+6).

(b) Exponentiation —e.g., 3"6+4.

(c) Negate—e.g., — B*4.

(d) Multiply and divide — e.g., 3*4/3+6.
(e) Add and subtract.

(f) NOT.

(g) AND.

(h) OR.

From low address to high address, the following information is
stored on the stack:

2 bytes indicating the importance of the operation.

6 bytes containing the floating-point number.

2 bytes containing the address of the appropriate maths routine.

Because these commands use the stack you must ensure that the stack areaisnot filled. It is difficult to
upset GOSUB and REPEAT, since you cannot specify which line RETURN and UNTIL apply to, but
often aFOR ... NEXT loop can remain open.

For example, if you used the following lines in your program, you might leave the FOR information on
the stack:

100 FORI=1TO 10
110 IF X$(1) ="4” THEN 140
120 NEXT |

If thistype of logic were repeated in other places you would soon be dealing with out-of-memory
errors. Remember that a FOR... NEXT loop needs 18 bytes of stack!

If thisis likely to be a problem, you will need to add alinein order to clear the unwanted FOR... NEXT
information:

100 FOR I=1TO 100
110 IF X$(1) ="4” THEN FOR 1=1 TO 1:NEXT I:GOTO 140
120 NEXT |

Remember also that if you use up most of the stack for FOR and GOSUB commands, you may
eventually hit an out-of-memory error when a complex formulais encountered.

5.4 Use of page 2

The difference between the use of #00 to #FF and #200 to #2FF is that the latter is mostly used by the
newer Oric commands, while page 0 is almost fully utilised by the standard parts of Microsoft BASIC.

Only those locations which are of any interest (or are unused) are mentioned. There are often
differences in the use of some locations by the two ROM versions.

#204 — Used when checking the range of values used in sound and graphics commands.

#208 — Contains details of the last ordinary key pressed (but not the ASCII code).

#209 — Contains details about the last shift or control key pressed.

#20C — Caps lock. This contains either #7F or #FF — no other value will work!

#212 — Contains the HIRES FB flag to indicate whether to draw, erase, or invert.

#213 — The pattern register is stored here. Y ou can POKE values here instead of using the

PATTERN command.

#215 — The graphics cursor mask.
#219 — The HIRES cursor X value.
#21A —The HIRES cursor Y value (do not forget to alter #10 and #11 as well).

#21F — A graphicsflag; 0isTEXT, 1isgraphics.

#220 —Memory size indicator; 0 means 48K, 1 means 16K.

#221 —#227 — Unused.

#228 — #22A — (version 1.0) Jump vector to the fast interrupt routine.

#22B — #22D — (version 1.0) Jump vector to the non-maskable interrupt routine.
#230 —#232 — (version 1.0) Jump vector to the dow interrupt routine.

#228 — #232 — (version 1.1) Unused.

#233 —#237 — Unused.

#238 — #260 — (version 1.0) Unused.

#238 —#23A — (version 1.1) Jump vector to VDU output routine.

#23B — #23D — (version 1.1) Jump vector to the KEY $ routine.

#23E — #240 — (version 1.1) Jump vector to the printer output subroutine.

#241 — #243 — (version 1.1) Jump vector to the routine that prints on the top line of the screen.
#244 — #7246 — (version 1.1) Jump vector to the fast interrupt routine.

#247 — #249 — (version 1.1) Jump vector to the NMI routine.

#24A —#24C — (version 1.1) Jump vector to the slow interrupt routine.

#24D —#25D — (version 1.1) Various uses in cassette I/0 — see Chapter 4.

#268 -- Cursor position down the screen, relative to the start address of the screen.
#2609 -- Cursor position across the screen.

#26A -- Oric status byte. Each bit relates to one aspect: from high bit to low bit — unused, double-
height,

protected-columns, ESC pressed, keyclick, unused, screen-on, cursor-off.
#26B — Text screen paper colour.

#26C — Text screen ink colour.

#26D —#26E — (version 1.0) Start of the TEXT screen —#28.

#26F — (version 1.0) Number of linesto scroll.

#272 —#273 — Timer 1 (used for reading the keyboard). W274 —t275 — Timer 2 (used by the flashing
cursor).

#276 —#277 — Timer 3 (used by WAIT, HIRES, and TEXT). #278 — #2BF — (version 1.0) Unused.
#278 —#279 — (version 1.1) Start of TEXT screen + #28.

#27TA —#27B — (version 1.1) Start of the text screen.

#27C —#27D — (version 1.1) Number of bytes to scroll — (#27E — 1) * #28

#27E — (version 1.1) Number of linesto scroll.

#27F — #2BF — (version 1.1) Used by the tape routines — (Chap. 4).

#2CO — Graphics enable: 0 means TEXT with GRAB, 1 means TEXT with RELEASE, and 3 means
HIRES.

#2C1 — #2C2 — Highest address with graphics enabled + 1.
#2CA4 — #2DE — Unused.
#2DF — The AS ClI codefor the last key pressed (with top bit set).

#2EQ — #2EF — The parameter area for graphics and sound commands.

#2F1 — Print flag — set to 128 to make all print go to the printer, O for it to go to the screen.
#2F2 — A flag set by the EDIT command.
#2F4 —Thetraceflag.

#2F5 — Address of the ! extension command.

#2F7 —(version 1.0 only). Theinverse flag. Try out different values!
#2F9 — #2FA — Unused.

#2FB — #2FD — A jump command to the & extension.

#2FE — #2FF — Unused.

5.5 Summary of ROM addresses

Version 1.0 ROM addresses are given first, followed by the equivalent version 1.1 address in

parenthesis. All addresses are hexadecimal. Where thereis no equivalent version 1.1 address, * — has

been specified.

C000 (C000) Jump to cold start.

C003 (C003) Jump to warm start.

C006 (C006) Addresses of subroutines to handle each token (-1)
COEA (COEA) BASIC tokens. The last character of each hasitstop bit set.
COEA (C3C6b) Search the stack until a‘FOR’ entry is found.
C3F8 (C3F4) A block move.

C43B (C437) Check stack for free space.

C448 (C444) Check an address against the top of memory
C475 (C471) Warm start entry (does not clear program).
C483 (C47C) Input and process aline.

C56F (C55F) Recreate links between each line.

C59C (C58C) Input aline.

C5F8 (C5ES8) Wait for a keypress and return the ASCII code.
C60A (C5FA) Trandate aline into tokens.

C6E4 (C6B9) Find the address of a given line.

C719 (C6EE) The NEW command.

C733 (C708) The RUN command.

C738 (C70D) The CLEAR command.

C751 (C726) Reset the stack.

C773 (C748) The LIST command.

C824 (C7FD) The LLIST command.

C832 (C809) The LPRINT command.

C841 (C855) The FOR command.

C8AD (C8C1) Process a BASIC statement.

CI91F (C952) The RESTORE command.

CBED (CCBO)
CESB (CF17)
D3ED (D499)
D4FO0 (D5AB)
D539 (D5F4)
D595 (D650)
D7F1 (DSAC)
D871 (D92C)
DA79 (DB04)
DAS0 (DBOB)
DA97 (DB22)
DC79 (DCAF)
DCB7 (DCED)
DD4D (DD51)
DDA3 (DDA7)
DDBF (DDC3)
DDEO (DDE4)
DDE5 (DDEY)
DE73 (DE77)
DEAS5 (DEAD)
DECD (DED5)
DEDD (DEE5)

DF12 (DF21) Calculate SGN.

DF31 (DF49) Calculate ABS.

DFA5 (DFBD) Calculate INT.

DFCF (DFE7) Input afloating-point number from a string of ASCII characters.
EOD1 (EOD5) Output a floating-point number into a string of ASCII characters.
E22A (E22E) Calculate the square root.

E231 (E235) Raise the second accumulator to the power of a number in memory.
E26D (E271) Negate the main accumulator.

E34B (E34F) Calculate RND.

E387(E38B) Calculate COS.

E38E (E392) Calculate SIN.

E3D7 (E3DB) Calculate TAN.

E43B (E43F) Calculate ATN.

E4A8 (----) Load afile from tape (see Chapter 4 for version 1.1).

E554 (E56C) Test for the end of aload from tape.

E563 (E5F5) Clear the top line.

E576 (ESEA) Print message at far left of top line.

E57B (----) Save afile on tape (for version 1.1, see Chapter 4).

E5C6 (E65E) Output one byte to tape.

E630 (E6C9) Read byte from tape.

Print ‘READY’.

The formula evaluation subroutine.
Integer to floating point.

Allocate string space.

Set up anew string.

Garbage collection subroutine.

Calculate the length of a string and clear temporary strings.

Floating point to integer.

Add 0.5 to accumul ator.

Subtract accumulator from memory.

Add accumulator to memory.

Calculate LOG

Multiply the accumulator by memory.

Move memory to the second accumulator.

Multiply the accumulator by 10.

Divide the accumulator by 10.

Divide memory by the accumulator.

Divide the second accumulator by the main accumulator.
Move memory to the main accumulator.

Move the accumulator to memory.

Move the second accumulator to the main accumulator.

Move the main accumulator to the second accumulator.

E696 (E735)
E6BA (E75A)
E6CA (E76A)
E6FO (E790)
E70E ()
E804 (E93D)
E905 (EB78)
E9A9 (EC21)
E9BB (ECC3)
ECO03 (EE22)
ECC7 (EDEO)
EDO1 (EE1A)
EDO9 (EE22)
ED1B (EE34)
ED70 (EESC)
ED81 (EE9D)
EDSF (EEAB)
EDAD (EEC9)
FO2D (FOC8)
F064 (FOFD)
FO79 (F110)
FOAS5 (F12D)
F141 (F1C8)

F17F (F204)
F18B (F210)
F1E5 (F268)
F2E5 (F37F)
F412 (FA9F)
F415 (FABS)
F418 (FACB)
F41B (FAEL)
FA1E (FB40)
F421 (FBDO)
F424 (FC18)
F409 (F77C)
F430 (F8B2)
F436 (F865)
FACS8 (F523)
F535 (F590)
F57B (F5C1)
F89B (F8DO)
FAG6C (FA86)

Latch onto tape header.

Output a tape header.

Change the 6522 ready for cassette 1/0.
Compare filenames.

Print authors' names.

Reset the 6522 after the completion of tape 1/0.
Read a key without waiting.
Switch to text mode.

Switch to high-resolution mode.
Entry for interrupt handler.
Start clock.

Stop clock.

Poll timers.

Service timers.

Clear timers.

Read timer.

Set timer.

Wait for agiven time.

CURSET

CURMOQV

DRAW

CHAR

POINT

PAPER

INK

FILL

CIRCLE

PING

SHOOT

EXPLODE

ZAP

SOUND

PLAY

MUSIC

Output character from X register to screen.
Entry point for non-maskable interrupt (NMI)
Output message to top line at position X.
Poll keyboard.

Write to the 8912 chip.

Output character in A to the printer.

Set up the ASCII character set.

Load up all the 8912 registers.

FAFA (FB14) The high-pitched click.
FB10 (FB2A) The low-pitched click.

6 MATHS, HIRES, AND MUSIC

6.1 Introduction

This chapter is concerned with the ROM subroutines which deal with arithmetic calculations, high-
resolution graphics, and the sound facilities.

These three subjects have been grouped together because the ROM subroutines are all quite complex
and their use can save alot of programming work and memory space.

6.2 Maths

If a machine code program needs to do any arithmetic (such as multiplication or division), it will
normally require a specially written set of subroutines. With the exception of single-byte add and
subtract, the 6502 cannot directly do any arithmetic.

The BASIC interpreter contains alarge number of useful subroutinesto handle all of its mathematics.
Often afew subroutine calls can save you hundreds of bytes of memory. It must be pointed out, though,
that calling such subroutinesis alittle risky. Should an error arise (such as a division by zero error) you
will be rudely dumped back to BASIC. Also, you may find that the routines are not fast enough for
your needs — especially functions like TAN and LOG.

The maths routines make good use of page 0 — see Chapter 5.

FLOATING POINT

All calculations are donein ‘floating point’, In BASIC, numbers can be stored in either a floating-point
variable (e.g., B) or an integer variable (e.g., C%). A variable such as B can contain any number up to
an accuracy of nine digits, with adecimal point that ‘floats' up and down the number. An integer
variable can only contain anumber between — 32768 and +32767, without a decimal point. Although in
theory this would seem to be faster to process, the ROM can only manipulate numbers in floating-point
form, so converts any integersthat are used.

When floating-point numbers are stored in memory (e.g., for variables and array elements), they
occupy 5 bytes of memory. Thisis made up as follows:

Byte 1: the exponent of the number.
Bytes 2 to 5: the mantissa of the number (most significant bit to least significant bit).

The number is trandlated into binary, and then the decimal point altered so that it is to the left of the
most significant digit (which in binary is aways going to be 1). The exponent represents the number of
decimal places that the decimal point has been moved, so if the mantissais M and the exponent isE,
then the value of the number isO.M. * 2" E.

There are three considerations:

1. When the exponent is positive (meaning that the number is 1 or greater), the exponent will be #80
upwards. When the exponent is negative (meaning that the number is 0 — 0.99999) the exponent is
subtracted from #80.

For example, an exponent of — 4 is #7C; an exponent of +4 is #84.

2. Since the leftmost bit of the mantissais always going to be 1, this bit is assumed and replaced with a
bit that represents the sign of the number (0 is positive, 1 negative).

3. When the number is zero the exponent is set to #00.

This can be quite difficult to follow, so here are afew examples of how numbers are stored. Do not
worry if you do not understand floating point fully — it does not prevent you from using the
subroutines!

EXAMPLES OF FLOATING POINT

1. +4 is Exponent: #83 Mantissa#00 #00 #00 #00. The most significant bit has been replaced by the
positive sign. The exponent is #83 because the number 100.0 is stored as 0.1.

2. —6is Exponent: #83 Mantissa #CO #00 #00 #00. In this casg, the lost bit at the front of the number
has been replaced with ‘1’ because the mantissais negative.

INTERNAL FLOATING-POINT NUMBERS

All calculations involve two operands, and since intermediate numbers need to be stored somewhere.
there exist two floating-point accumulators. These are similar in format to the floating-point numbers
stored in memory, except that the sign of the mantissa does not overwrite the highest bit in the
mantissa. To save time, the sign is stored as a sixth byte, with its top bit cleared for positive numbers
and set for negative numbers.

A mantissa of zerois till represented by a zero exponent.

The two accumulators are known as ACC1 and ACC2 in the remainder of this chapter. Unless stated to
the contrary, ACCL is used to receive the result of any calculation, with the exception of some of the
transfer commands. As discussed in Chapters 3 and 4, ACC1 is used by the extension commands ! and
& when passing numeric data, as well as in the formula evaluation subroutine.

LOCATION OF NUMBERS
ACC1 is stored between #DO and #D5, as described above. ACC2 follows ACC1 at #D8 to #DD.

When a floating-point number is turned into a string of ASCII characters, this string is always stored
between #100 and #10F. The reverse procedure, however, uses the pointer #£9, #EA to indicate the
start address. Remember also that version 1.0 ROMs have a bug that puts the attribute 02 (instead of
#20) at the front of the number.

When the routines refer to a number in memory, two of the 6502 registers are used to point to the start
of this area.

ROM ROUTINES FOR MATHS

Asusual, version 1.0 ROM addresses are given first, followed by the equivalent version 1.1 addressin
brackets.

M ovement of data

Convert integer in Y (low) and A(high) to ACC1. #D3ED (#D499).

Convert ACC1tointeger in'Y (low) and A (high). #D871 (#D92C).

Move from memory location A (low), Y (high) to ACC2. #DD4D (#DD51).
Move from memory location A (low), Y (high) to ACC1. #DE73 (#DET7).
Move ACC1 to memory location X (low), Y (high). #DEAS5 (#DEAD).
Move ACC2 to ACC1. #DECD (#DED5).

Move ACC1 to ACC2. #DEDD (#DEE5).

Input ACC1 from an ASCII string (asin the VAL function). You must call subroutine #E8 first, then
call #DFCF (#DFEY). The string should be terminated by a comma, colon, or #00.

Output ACC1 into an ASCII string, as in the STR$ function (the string is stored at #100 upwards,
ending with #00). #E0D1 (#EOD?S).

Arithmetic

Add ahalf to ACC1. #DAT9 (#DBO04).

Calculate a number in memory (A low, Y high) minus ACC1. #DA80 (#DBOB).
Add anumber in memory (A low, Y high) to ACCL. #DA97 (#DB22).

Multiply anumber in memory (A low, Y high) by ACC1. #DCB7 (#DCED).

Multiply ACC1 by ten. #DDA3 (#DDA7).

Divide ACC1 by ten. #DDBF (#DDC3).

Divide a number in memory by ACC1. #DDEOQ (#DDE4).

Divide ACC2 by ACC1. #DDE5 (#DDED9).

Raise ACC2 to the power of a number in memory. #E231 (#E235).
Multiply by — |. #E26D (#E271).

Mathematical functions—asused in BASIC

LOG (ACC1) #DCT79 #DCAF

SGN (ACC1) #DF12 #DF21
ABS (ACC1) #DF31 #DF49
INT (ACC1) #DFAS #DFBD
SOR (ACC1) #E22A #E22E

RND (ACC1) #E34B #E34F

COSs (ACC1) #E387 #E38B

SIN (ACC1) #E38E #E392
TAN (ACC1) #E3D7 #E3DB
ATN (ACC1) #E43B #E43F

6.3 High-resolution graphics

HOW HIRES WORKS

The switch from TEXT to HIRES mode is often assumed to be a fixed procedure. In fact it is possible
to mix HIRES and TEXT in combinations other than the usual 200 by 240 pixels followed by three
low-resolution lines.

The standard HIRES effect is obtained by clearing down the area of memory between #A000 and
#BF3F and writing a specia attribute —#1E to the last text screen position. All the other processes,
such as copying the character sets and spacing out the text lines, are just cosmetic.

The way of mixing HIRES and TEXT isalittle complicated and can be best thought of asathird
graphics mode — SEMI-HIRES. Thisthird mode can be entered while in TEXT mode, but to BASIC,
you remain in TEXT mode. Because of this, the bottom half of the screen cannot be used for the
HIRES aresa, since this would then overwrite the character sets and conflict with the text screen.

What happensin SEMI-HIRES mode is that when a code of #1E is found in the text area, the VDU
switches the rest of the screen into HIRES mode, using the HIRES memory. This continues until the
attribute #lA is encountered in the HIRES memory. Figure 6.1 explains how each character square
shown on the screen relates to two different addresses. For instance, the top left character cell is either
#BBB80 on the text screen or #A000 on the high-resolution screen.

In SEMI-HIRES mode, you will normally only use up to #B3FF for the high-resolution part; anything
below that should bein TEXT mode. If you do go below that, you will wipe out part of the character
sets and therefore not be able to display characters on any text areas. In the proper HIRES mode, it
does not matter that we overwrite the character sets, since we are only presenting text on the bottom
three lines. Thelast three lines on a screen that isin HIRES mode always use the copied character set at
#9800 to #9FFF — this does not apply in SEMI-HIRES mode.

MIXING HIRES AND TEXT

Looking at Fig. 6.1, you will see that on the |eft side are the addresses which relate to the HIRES
screen and on the right are addresses which relate to the text screen. It isimportant to think in terms of
character cells when considering what will happen to the screen. To change part of the screen into
HIRES, you only need the one character position to contain the specia attribute —#1E. However, when

switching back to TEXT, you should remember that there are eight lines which are now in HIRES. If
you only switch one line back to TEXT, then the following linesin that character cell will still bein
HIRES — only the rest of that one line will have been altered back in to TEXT mode. Therefore, to
switch the rest of the screen to TEXT, you need to have that TEXT attribute on the last line of the eight
which correspond to a particular character cell. If you want to change modes in the middle of aline,
you will need one TEXT attribute placed after each of the high-resolution lines. Do not worry if you
cannot follow this—the examples will clarify the issue.

For instance, if we wish the top eight lines of the screen (where CAPS is displayed) to bein HIRES
mode, we POKE #BB80,30 and POKE #A13F,26. Now you will find that the text area #BB80 to
#BBA7 has been replaced by a HIRES area (#A000 to #A13F). There are two important points to note:

1. The very first location in the high-resolution area (in our last example thisis #A000) cannot be used.
2. Thelast location must be left alone, sinceit is responsible for switching back into TEXT mode.

In BASIC, the system will still think that it isin TEXT mode — little does it know what you have done
to its screen!

This means that it will give youa‘DISP TYPE MISMATCH ERROR' if you try any graphics
commands. Thisis easily overcome by ORing location #2CO with 1. Obviously you should be careful
that the HIRES area #A000 to #A 13F is not being used by BASIC —aHIMEM #9FFF will do the trick!
After this, you will be able to use all the HIRES commands as normal. Unless you have previously
entered HIRES mode properly, the cursor position and PATTERN register will be undefined.

Remember not to draw over the bottom part of the screen!

The SEMI-HIRES mode has the advantage of letting you have a screen composed of half text and half
graphics. In addition you will recover at least 2K of memory space (#9800 to #9FFF).

To create such a set-up, you would:
1. POKE #BB80,30 (switch to HIRES).

2. POKE #B3FF,26 (end of HIRES area). Note that #B3FF is the address of the lowest line within the
required character block.

3. POKE #2CO,PEEK (#2CO) OR 1 (to alow HIRES commands).

4. For version 1.0: POKE#26F,12:DOKE#26D,#BDD8; for version 1.1: POKE #27E,12: DOKE
#27A, #BEOO: DOKE #278, #BE28: DOKE #27C,440.

These POK Es and DOKEs make sure that only the bottom half of the screen scrolls.
5. Clear the screen.

It is advisable to do al these commands in one go. Y ou will notice that the HIRES screen contains
vertical lines. This can be cleared by using the FILL command (filling the screen with #40).
Alternatively, if you do a HIRES command beforehand, thiswill not be necessary.

When using this HIRES area, remember to leave location #B3FF well alone! Y our first HIRES
commands should set the pattern and cursor positions.

MIXING HIRES AND TEXT ON ONE LINE

Here is something quite remarkable! Type the following as a one line command:
FOR K=0T07:J3=K*40

POKE #A022+ JK+1:

POKE #A 023+ J,26: NEXT:

POKE #BBA1,30

The CAPS sign should burst into colour!

In thisway, part of atext line can be switched to HIRES, and back again, and the attributes in that
HIRES area affect the rest of the text on that line.

This feature opens up all sorts of possibilities. For instance, it isnow possible to flash just part of one
character on the text screen.

HIRES AND INTERRUPTS

On version 1.0 ROMsthe TEXT and HIRES commands use the third software timer to wait for two
interrupts after storing the HIRES or TEXT attribute at #BFDF. This means that interrupts must be
running normally at the time you use the commands. On version 1.1 ROMs this applies only to the

TEXT command.

MACHINE CODE SUBROUTINES

In order to perform the BASIC HIRES instructions (such as CIRCLE, DRAW, and CURSET), a
machine code program must first set up a number of parametersin the area #2E1 to #2EF. These are
always in the same format as the actual BASIC command and must be stored as 2-byte integer values at
#2E1 upward. For instance, ‘ CIRCLE 20,1' would require: #2E1: #14; #2E2: #0; #2E3: #1; #2E4: #0.

Consult the BASIC handbook for the format of each command.

The range of the parameters you pass will be checked, as it would bein BASIC, and location #2EO is
set to 1if there are any errors.

Asusual, the first address is for version 1.0 ROMs and the addressin bracketsis for version 1.1 ROMs:

HIRES #E9BB (#EC33) —no parameters.

TEXT #E9A9 (#EC21) — no parameters.

PAPER #F17F (#F204) — #2E1,2: paper colour.

INK #F18B (#F210) —#2E1,2: ink colour.

CURSET #F02D (#FOC8) — #2E1,2: X; #2E3,4: Y; #2E5,6: FB code

DRAW #F079 (#F110) — parameters as for CURSET.

POINT #F141 (#F1C8) —#2E1,2: X; #2E3,4: Y. Returns #FF or #00 in #2E1, depending on

whether the point is set or cleared.
CURMOV #F064 (#FOFD) — see CURSET.

CHAR #FOAS5 (#F12D) — #2E1,2:ASCII code; #2E3,4: character set; #2E5,6:FB code.
FILL #F1E5 (#F268) —#2E1,2: No. of rows; #2E3,4:No. of cells; #2E5,6: value.
CIRCLE #F2E5 (#F37F) —#2E1,2:radius, #2E3,4: FB code.

PATTERN — No call is needed, simply POKE #213 with the required pattern.

You will find that these subroutines are only dlightly quicker than the equivalent BASIC command.
Chapter 7 explains some faster methods of using high resolution.

6.4 Sound and music

ROM ROUTINES

All of the BASIC commands for sound and music can be easily accessed from machine code. The same
method of supplying parametersis used as for the graphics commands.

PLAY #FA21 (#FBDO) — #2E1,2: tone enable; #2E3,4: noise enable;
#2E5,6: envelope; #2E7,8: envelope period.

MUSIC #F424 (#FC18) #2E1,2: channel; #2E3,4: octave; #2E5,6: note;
#2E7,8: volume.

SOUND #FAL1E (#FB40) #2E1,2: channel; #2E3,4: period; #2E5,6: volume.
ZAP #F41B (HFAEL).
EXPLODE #F418 (#FACB).
PING #F412 (#FA9F).

SHOQOT #F415 (#FA9B)

KEYCLICK-1 #FAFA (#FB14)
KEYCLICK-2 #FB10 (#FB2A)

In machine code a program can also directly access the sound chip. Chapter 1 describes this device and
gives all the details about the registers.

In order to write to the 8912 sound chip, you must call a subroutine at #7535 (#F590) for every register
that you need to change. Thisis done by putting the register number (0 to #E) in the accumulator and
loading the datain the X register.

Please note that the envelope shape that you put in register #D is different from that used in the PLAY
command. Refer to Chapter 1 for details of which values relate to which envelope.

Since any one musical effect may require the setting of up to 14 registers, the ROM conveniently
provides a subroutine to do just that. The routine starts at #FA6C (#FA86) and assumes that the X and
Y registers point to the start of a 14-byte table (X islow, Y ishigh, and the table refers to registers 0 to
#D).

Often it is useful to call thisloader in order to get the type of sound required, and then change
individual registersto alter pitch, volume, etc.

The subroutine that loads up a register with a value suffers from being rather inefficient. Y ou will find
a better version in the speech synthesis program of Chapter 9.

FASTER HIGH-RESOLUTION GRAPHICS

7.1 Objectives

Chapter 6 dealt with the subject of high-resolution graphics when using the routines contained in the
ROM. This chapter will present you with a much faster set of routines to be incorporated into your own
programs. Depending on what your program is doing, you could just use one or more of the subroutines,
or just make use of the concepts involved.

These special subroutines occupy RAM between #1200 and #17FF, with other extensions and
examples put elsewhere. The relocating program in Chapter 4 can be used to move the high-resolution
routinesto a place suited to your needs.

Here isasummary of the high-resolution routines, to whet your appetite!
1. Plot character cell. Thisisan extremely fast routine for putting a character cell on the screen.
2. Test routines to look for collisions between a character cell and other objects.

3. A fast eguivalent to CURSET and POINT.

4. An easy-to-use routine for drawing larger, odd-shaped objects, with colours.

5. A colouring facility for the character plot routine.

6. A paint facility to fill inirregular shapes. This can be used from within BASIC.

7. A compactor routine for the high-resolution screen. This makes it possible to store apicturein a
compressed form.

7.2 Thetheory behind the fast plotting routine

THE USE OF TABLES

The normal way of plotting points on the screen involves two things:

1. Finding the correct address for agiven X, Y position.
2. Determining the bit position within the byte at that address.

When you are plotting awhole 6 by 8 character, you would then usually shift that character a number
of times, depending on the bit position. If you are just dealing with one pixel, you use the bit position
(asanumber 0 to 5) in order to reference a table containing the numbers: #20, #10, #8, #4, #2, and #1.
One of these numbersis then either ANDed or ORed with the contents of the address in order to s,

clear, or test the hit.
The usual way of calculating all thisinformation isto:

1. Multiply the Y co-ordinate by 40 and add #A000.
2. Add thisto the X co-ordinate divided by 6, to give the address of the pixel.

3. Usetheremainder from thislast division to give the bit position.

What really dows up this procedureis the division by 6. Division by 4 or 8 can be done with the use of
simple shiftsright, but in order to divide by 6 you must use arather cumbersome divide routine.
Multiplying by 40 is also a difficult task in machine code.

The method used here gives an increased speed of about 10 times in comparison to using the ROM
routines. When compared with using BASIC, the acceleration is seventy-fold!

The secret isthat a 1K table is generated and used, and this provides all the addresses and bit positions
very rapidly. Thistable sits at 1400 to 17FF (but is easily relocated) and is made up of four 256-byte
tables, as follows:

1. Thehigh vaue of the address at the start of every HIRES line.

2. Thelow value of this address.

3. Thenumber of character cell positions across the line, for each possible value of X.

4. The bit position within the byte for each possible value of X, multiplied by 16. (Thiswill be
explained shortly.)

It can be seen that given aparticular (X, Y) coordinate, the correct address can be quickly located.

If you want to draw a character at a given point (the top left position of the character) you will then
have to shift each line of that character a number of times — as given by part four of the table. Sincethis
israther long-winded, we save time by shifting the character from one to five times and saving al the
possibilitiesin atable (#60 byteslong). The location of thistable is supplied by the calling program,
since there could be any number of these character tables. These short tables are organized as 6 sets of
16 bytes — one per number of shifts required. Each of these consists of two sets of 8 bytes,
corresponding to the patterns that make up the character you are plotting. Y ou need 2 bytes since the
character, when shifted, falls between one character cell and the next. Most of the routinesin this
chapter will rely on the 1K table, but apart from that there are three different types of graphics, as
follows:

1. Graphicsroutines that draw a previously analysed character.

2. Graphicsroutines that draw a shape that is not in the form of character cells, e.g., 12 dots across by
4 dots down.

3. Graphicsroutines to handle individua pixels, for usein routines like PAINT.

DRAWING AN ANALYSED CHARACTER

Once you have worked out all the possible shifted values of a character, it is quite simple to display that
character, since the last part of the 1K table gives the offset into the #60 byte table (which is why the
values were multiplied by 16 beforehand).

In order to display a character, and subsequently remove it, you only need to use the one routine,
employing the exclusive-OR function.

In other words, if you exclusive-OR the letter * A’ onto a blank screen, the * A’ will appear, until you re-
do the exclusive-OR, when the * A’ disappears. This saves having separate routines to draw and remove
acharacter.

The added advantage is that if you exclusive-OR on top of an existing pattern, you keep that pattern
intact after the second time you call the routine.

One disadvantage is that you must be careful not to exclusive-OR over the top of an attribute or the
screen could go haywire!

12003
1202=
1204:
1206462
1207:
1208:
1209:
120A:
120B:
120E:
12103
1213:
1214z
121542
1217:
1219:
121Bs
121D«

121F:
12213
1222z
1224z
12263
1228:
1229:
1228:
122D;:
1230:
1232:
12355:
1237:
1238:
123A:
1230
123E:
1240;
1241:
1243:

Program 7.1 isthe first part of our graphics routines, which sets up the tables.
Following the table set-up subroutine, which you call once, we have the routine (Program 7.2) you call

288 388

o
0

2088 332888 823 [28GR

E8BR3ATh3BIGRRIRIRS

LDX
LDY
85TX
TXA
ASL
AbL
ASL_
ASL
STA
LDA
STA
INY

INX

BNE
INC
LDX

BEQ
NOP
LDA
STA
LDA
TAY
5TA
LDA
STA
LDA
sSTA
LDA
cLC
ADC
STA
BCC
INC
INY
BNE
RTS

#$00
#3800
$80

$1500,Y
$80
$1400,Y

%1222

#5084
%1206
$80
#5600

$1206

#HEA0
s81
#8300

$B80
$80
$1600,Y
$81
$1700,Y
$B80

#5286
$80
$1240
$81

$1228

for each character which you will want to display eventually.

To call thisroutine, you must set up the X register to the appropriate ASCII vaue, A to the low part of
a spare #60 byte address, and the Y register to the high value of this #60 byte table. The routine uses
the normal character set area at #9800, though you may choose to alter this to the alternate area at

#9C00.

1244:
1244:;
1248:
1244:
124C;
124E:
1250:
12522
1254 :

1256
1258:

125A
125C
125E:
125F
1261
1263:
12565:
12671
12&6%:
12&6B:
12&D:
126Fs
1271:
1273
1275z
1277:
1278:
127A:
127C:
127TE:
1280:
1282:
1283:
12843
12852
12872
1289:
128B:
128C:
128D:
128E:
1290z
12922
12935:
1295:
12972
129%:
129B:
129D:
129F:
12A1:
12A3%:
12AS:

Program

85
B4
AT
85
AT
85
Bé&
&6
26
Q&
2

o

el I =
oo

2UE3BBIRBRAR &2

BI883

8

AR N A R A I A A R A A Ak k)
8R88ERBSR8 a8

=3

8Cc

58288

B4
B4
B85
B84

ASL

CLC
LDA

STA
LDY

STA
LDA
8TA
LDX
LSR
DEX
LSR
LDA
STA
TYA
TAY

sSTA

TAY
INY

8TA

5TaA
STY
LDA
574
LDA
S5TA
STX
ASL
ROL
ASL
ROL

$B8C
$8D
#3000
$B80
#$00
85
84
%84
$85
%84
%85

($8C), Y

#308
1267

s8c
#%10
s8C
129D
SED
%80
%80
#$056
$1265

2 (Create character table (#1244-#12A5)

The subroutine of Program 7.3 is called by the character drawing and testing routines, and cal culates

the address of an X, Y co-ordinate.

12A6:
12A8¢:
12AB:
12AD:
12B0:
12B2:
12B4:
12B7:
12BB:
12BA:
i2BC:
12BE:
12C0:
12C3:
12C4:
12Ch:
12C8:
12CA:
12CC:

Ad
B9
as
B9
85
AL
B
18
&5
85
F0
E&
B9
18
&5
BS
0
E&
&0

BB
00
B2
00
83
BA
00

82
82
o2
B3
o0

8c
8Cc
02

8D

16

17

14

15

LDY
LD#A
5TA
LDA
STA
LDY
LD#A
CLC
ADC
5TA
BCC
INC
LDA
CLC
ADC
STA
BCC
INC
RTS

+8B
$1600, Y
$82
$1700,Y
+83
$8A
$1400,Y

82

B2
$12C0
$83
$1500,Y

$8C
$8C
$12CC
$8D

Program 7.3 Calculate address (#12A6-#12CC)

And now to the subroutine which you call when you want to display something (Program 7.4).

The routine exclusive-Ors the character stored in the table pointed to by the A and Y registers onto the
screen at the X, Y co-ordinate given by addresses 8A and 8B respectively. Register A isthe low part of
the table’s address and register Y isthe high value. For example:

LDA #45

STA $8A

LDA #60

STA $8B

LDA #40
LDY #OF

L2CD:
12CF:
12D1:
12D4:
12Dé&:
12D8:
12DA:
12DC:

X co-ordinate

Y co-ordinate

F40 is address of the table.

85
84
20
AD
B1
=1
F1

8C
8D
Ab
00
8z
8c
82

5TA
STY
JSR
LDY
LDA
EDR
STA
TYA

$8C

$8D
$1206
#$00
($82),Y
($8C) , ¥
($82),Y

12DD: 4B PHA

1Z2DE: O% 08 ORA #s08
12E0Q: Ag TAY

12E1: B1 8C LDA (#8C) ., Y
12E3: AA TAX

12E4: &8 FLA

12ES: AL TAY

12E6: ce INY

12E7: 8A TXA

12EB: al 82 EOR {($82),Y
12EA: 1 82 STA ($82),Y
12EC: i8 CcLC

12ED:= AS 82 LDA =B2
12EF: &9 27 ADC ws27
12F1: 85 B2 STA %82
12F3: Q0 02 BCC $1i2F7
12F5: Es B3 INC %83

12F 71 CoO 08 CPY #%$08
12F9: DO DE BME $12D&
12FB: &0 RTS

Program 7.4 Display character cell (#12CD-#12FB)

7.3 Collisions

The last routine can be used to put a character on and take a character off the screen, but one important
facility isto be able to test for collisions—in games, etc.

There are two main cases to consider:
1. When an object is prohibited from running into other objects, including any screen border.

2. When an object is being shot at, by some other moving character that is using exclusive-OR, and it is
possible that a given character has been ‘destroyed’. An example of thisiswhere alaser baseis
destroyed by arain of missiles.

In the first case, we need aroutine that looks at a given area, and if there isroom for your character, it
returns with the zero flag set. The second subroutine examines the area where your character was last
seen, and returns the zero flag set if your character is still in one piece.

Thetimings for calling these two routines are quite different:
1. Thefirst routineis looking for a clear area, so call it before drawing on the character.

2. The second routine must be called after all screen objects have been moved and drawn. The
assumption here isthat after one character has been drawn, another may overlap it and thus wipe part
of it out.

To call either of these routines you must set up the A and Y registers, as in the previous subroutine,
with 8A and 8B containing the X and Y positions of the character on the screen.

12FC:=
12FE:
1300z
1303:
1305:
1307:
130%9:
130B:
130C:
130D:
130F :
1310z
1312:
1313:
1314:
1315:
13162
1317z
131%:
131B:
121C:
131E:
1320z
1322:
1324z
1326z
1328:
132A:

Program 7.5

B85
B4
20
Ao
Bl

B3 <

5
]

S3n3- BRBERRES

85
70
Eé
Co
DO
&0

ac
8D

“"BR8R

82

a8z
27
82
02
83

DE

12

S5TA
sTY
JSR
LDY

TAX
PLA
TAY
INY
TXA
AND
BNE
CLC
LDA
ADC
STA
BLCC
INC
CPY
BNE
RTS

$8C

$8D
$12A6
#%00
($82),Y
($8C), Y
$132A4

#508

($8C),Y

($82),Y
$132A

$82
NE$27
%82
$13256
$83
#%08
%1305

Test for collisions (#12FC—#132A)

The first subroutine is given in Program 7.5.

The second routine,which tests to see if a character isawholeislistedin 7.6

132B:
132D:
132F:
1332:
1334;
13363
13X8:
133A:
133C:
133D
133E:
1380:
1341:
13432
13435:
1346:
13471
1348:
1XZ8A:
134C:
134E:
13501
1351:
1333:
1355:
1357:
135%:
1358:
133D:
135F:

BC
ab

82
BC
BC
23

8

A8

GEARBYT SRIR

STA
STY
JSR
LDY
LDA
AND
CHF
BNE
TYA
PHA
ORA
TAY
LDA
STA
PLA
TAY
INY
LDA
AND
cmP
BNE
cLC
LDA
ADC
STA
BCC
1NC
CPY
BNE
RTS

$BC

8D
$12A4
#$00
($82),Y
($8C), Y
(8$BC), Y
$135F

#3508

(%80, ¥
SBE

EY:'S
($82),Y
$BE
$135F

s82
#9827
s82
1358
83
#%08
$1334

Program 7.8 Test for desiroyed character {#132B-#135F)

7.4 Fast single-point plotter

This short routine (Program 7.7) usesthe 1K table set up at 1400 to 17FF to provide an extremely fast
method of dealing with individual pixels. It takesregisters X and Y which give the co-ordinates and
returns an address at #82 and a bit position in the accumulator. This bit position is in the form of one
bit set in the byte — ready to be ORed with the contents of the address.

1360: 18
1361: B9 00

146

1364: 7D 00 14
13467: B3 B2
Program 7.7 (continues)
136%: AT 00 LD
136B: 79 00 17 ADC
135E: BS 83 STA
1370: BD 00 15 LDa
1373: 4A LSR
1374: 44 LSR
1375: 4Aa LSR
13761 4R LSR
1377: AB TAY
1378: BY 9E 13 LDA
137B: A0 00 LDY
137D: &0 RTS

CLC

LDA $1&00,Y
ADC $1400, X
STA s$B2

#300

$1700,Y

83

$1500, X

$139E, ¥

#8500

Program 7.7 Fast pixel-addressing subroutine (#1360- #137D)

This subroutine also uses a short table of the bit positions at 139E:
139E: 2010 08 04 02 01

The next subroutines (Programs 7.8 to 7.11) use afast plotting routine, as follows:

1. Set (OR) adot —#137E.

2. Remove (AND after inverting) a dot — 01386.

3. Alter dot (exclusive-OR) — #1390.

4. Test dot —return the zero flag set if dot is clear —#1398.

To call any of these subroutines, you only need to set registers X and Y to the correct horizontal and
vertical values.

137E: 20 &0 13 JSR #1340

1381: 11 B2 ORA ($82),Y
1383: 91 82 STA ($82),Y
1385: &0 RTS

Program 7.8 Set dot (#137E-#1385)

1384: 20 &0 13 JSR $13460

138%9: 49 FF EDR #SFF
138B: 31 82 AND ($82),Y
138D0: 91 82 S5TA ($82),Y
138F: &0 RTS

Program 7.9 Clear dot (#1386- #138F)

1390: 20 &0 13 JSR $1340

1393: 51 B2 EOR (%B2),Y
1395: 91 B2 STA ($82),Y
1397: &0 RTS

Program 7.10 Alter dot (#1390-#1397)

1398: 20 &0 13 JSR $1340
139B: 31 82 AND ($82),Y
139D: &0 RTS

Program 7.11 Test dot (#1398-#139D)

COLOURING THE SCREEN

For the fastest possible graphics, it is advisable to colour the screen with preset paper and ink attributes
to the left of your graphics area. If it isimportant to colour a character, then the following routinesin

Program 7.12 can be used.
For each character you need a 16-byte area, half filled with the attribute for each of the eight lines. The

remaining 8 bytes are used to store the contents of the screen before it is overwritten. Normally you
will store a set of INK colours (i.e., numbers between 0 and 7), but remember that it is possible to

specify a PAPER colour, or perhaps even a flashing attribute.

Theroutineis called with X and Y registers set to the screen position (top left) where the colours are to
be stored. Also, #38C, #8D should be set to the address of the 16-byte area that is being used for this

character.

1187
118A:
118C:
118D:
11BE:
118F:
1191
1192:
1193:
1195:
1196:
1197

119%9:
119B:
119D:
119F:
11AlL:
11A2:
1144
11A&
11A8
1144
11AC
11AD:
11AF:
11B1:

&0 13
82

08

8c

Bl 82
Program 7.12 (continues)

ce
Do
B1
21
18
[
&
85
FO
E&
ce
Co
Do
a0

JSR %1340
LDA ($82),Y

TYA

TAX

DRA #%08
TAY

FLA

STA ($8C),Y
TXA

TAY

LDaA ($82),Y

CHFP #®%40
BME %1iAl
LDA ($BC),Y
STA ($82),Y

CcLC

LDA B2
ADC #%27
STA 82
BCC =*11AC
INC %83
IMNY

CPY #3008
BNE %118A
RTS

Program 7.12 Colour character subroutine (#1187-#11B1)

Having drawn the colours, and perhaps worked out a new position for the character, you must remove
the attributes, restoring the screen to its former glory.

11B2:
11B85:
1187:
11B9:
1188:
118D:
i11BF:
11CO:
iiC2:
11C4:
11Cé:
11CB:
11CA:
11CB:
11CD:
11CF:s

20
AS
09
85
B1
F1
18
AS

&9
8%
)
E&
ca
Co

1]
&0

&G
ac
08
ac
ac
82

=4
27
B2
02
B3

o8
EC

13

JSR %1360

LDA s8C
DRA #s08
S5TAa s8C

LDA ($8C),Y
STA ($82),Y

CLC

LDba 82
ADC #8227
S5TA 82
BCC s$11CA
INC 38X
TNY

CFY #5088
BNE $11EBE
RTS

Program 7.13 Remove colours (#11B2-#11CF)

Thisis done by the subroutine at #11B2, listed in Program 7.13.
If you intend to colour moving objects by using these two subroutines, follow this order of events:

1. Draw all the objects, using the exclusive-OR character facility provided.
2. Fill in the colour attributes, where required.

3. Delay as necessary, and work out new positions of objects, etc.

4. Remove colours, restoring parts of the screen.

5. Use exclusive-OR at the old positions to remove objects.

This sequence isimportant because you may get into trouble using exclusive-OR over attributes, since

the attributes may be altered to one of the ‘nasty’ control codes and cause the picture to break up.

7.6 Drawing larger shapes

Although the character drawing subroutines are quite fast, it can be quite awkward to have to work out
graphicsin terms of 6 by 8 character cells. The following routine (Program 7.14), though still using the
specia graphics table, moves away from using character cells, and lets you draw an irregular shape,
complete with colour.

All you have to do is provide the subroutine with the address of your object, plus details of its height
(in pixels) and width (in character cells).

You must set up this information as follows:
1. Store the graphics shape in a free area of memory. The area must be pointed to by #8C, #3D.
2. A second free areaisrequired, equal in size to the first, pointed to by #80, #81.
3. The data for the object must be stored line by line, with 1 byte for
each 6 pixels, or an attribute, and the number of bytes across
should be stored at #8E.
4. The number of lines down isrequired at location 8F.

5. Finally, you must load up the X and Y registers with the appropriate screen position (top left of the
object).

With the parameters stored in exactly the same way, you call the routine at #115E in order to remove
your artwork (Program 7.15).

10F2: 20 &0 13 JSR #1360
10F5: BD 00 15 LDA $1500,X
10FB8: 4A LSR
10F?: 4A LSR
10FA: 4A LSR

Program 7.14 (continues)

10FB: 44 LSR

10FC: 83 8A STA SBA
10FE: AS BF LDA $8F
1100: B3 BS STA $BS
1102: AQ QO LDY 8800
1104: A9 0O LDA 8800
1106: B3 B84 STA sBa
1108: A9 00 LDA #8%00C
1104 83 B84 STA $B&
110C: AL BA LDX %BA
110E: Bl 82 LD#&A ($82),Y
1110: g1 80 SThA (880),Y
1112: Bl 8c LDA (s8C),Y
1114: C9 40 CMP #8840
1114 90 19 BCC #1131
1118: 29 BF AND Bs$BF
111A: ECQ 00 CFX #%00
111C: FO 07 BEQ %1125
111E: 18 CcLC

111F: &A ROR

1120: &6 B& ROR $8&
1122: CA DEX

1123: DO Fa BNE S111F
1125: OF 84 ORA 83
1127: 446 B& LBR s84
1129: 446 B& LBR sB&
112B: AL B& LDX 84
112D: ©O& B84 STX B4
112F: 09 &0 DRA #%40
1131 91 82 STA (882),Y
1133: ce INY

1134: C4 BE CPY S$BE
1134: DO DO BNE 51108
1138: 18 cLC

1139: AS 82 LDA =82
113B: &9 268 ADC #s2B
113Dz 83 82 5TAa %82
113F: 0 02 BCC #1143
1141 E& B3 INC %83
1143: 1B CLC

1144: AS 80 LDA B0
1146z &3 BE ADC *BE
1148: 65 80 STA %80
114A: S0 02 BCC *114E
114C: E& Bl INC %81
114E: 18 CLC

114F: AS B8C LDA s8C
1151: 65 BE ADC $BE
1153: BS 8C STA %8BC
1155: 90 02 BCC %1159
1157: E& 8D INC $8D
1159: C& B3 DEC $B85
115B: DO AS BNE %1102
1150D: &0 RTS

Program 7.14 Draw large shape (#10F2-#115D}

11S5E: 20 &0 13 JSR $13&0
1141: A& BF LDX s8F
11631 A4 BE LDY $BE
1145: 88 DEY

11646: Bl 80 LDA ($BO),Y
1168: T1 82 8STA ($B2),Y
ii6A: 88 DEY

114B: 10 F9 BPL S$114646
114D: 18 cc

i14E: AS 80 LDA %80
1170: &5 BE ADC $SBE
1172: 85 B0 STA $B0
1174: S0 02 BCC %1178
1174: E& Bl INC #81
1178: 1B CLC

1179: AS 82 LDA B2
117B: &9 28 ADC #s28
117D: B5 82 STA 82
117F: 90 02 BCC %1183
1181: E& B3 INC s83
1183: CA DEX

1184: DO DD BNE $11563
1184: &0 RTS

Program 7.15 Remove large shape (#115E-#1186)

The method used to show graphics in these last two routinesis simply to overwrite parts of the screen,
and not use exclusive-OR. This will occasionally be more convenient, since you will then not have to
worry about drawing over thetop of other attributes. However, | have not provided any method of
detecting collisions when using this method.

7.7 Examples

EXAMPLE 1-A DEMONSTRATION OF THE CHARACTER DRAW FACILITY

Thisfirst exampleis based on the character cell type of graphics. It moves a multicoloured square of
AB and CD back and forth.

Of coursg, if you modified the character definitions for A to D, then you would see some other graphics
pattern crossing the screen.

0DO0:
0DO3:
0DOS:
0oDO07:
0DO%:
ODOC:
ODOE:
0D10:
0oD12:
0D15:2
oD17:
oD19:
OD1B:
OD1E:
0D20:
0D22:
OD24:
oD27:
0oD29:
oD2B:
0D2ZDs:
OD2F:
0D301
oD32:
oD34:
0D36:2
oD38:
0OD3A:
OD3C:
OD3F:
0D40:
0oD42:
OD44:
oD4é:
OD48:
OD4A:
OD4D:
OD4E:

22352982 2R822RBARRBES

BoN338335 833 RRRE3RRIRBIRANBIREBINBEIRG
BREBRE ERBEE=S

-0
-

STA

LDY
JSR

LDA

$1200
%41

$1244
4542

$1244

13

oDSOnx
oDS2:
oDS4 =
0ODSé:
O0D58:
ODSB:
ODSD:e
ODSF:
oD&l:
oD&3:
OD&&n
OD&H:
0oD&F:
OD&B:

SERE3ENINISSE383B R LB NCINI AR RI2BILEE3IRRES

OD&E
0D70:
oOD72:
0D74:
OD76:
oD77:

OD7E\
OD7A:
0D7Ds
OD7F:
ODE21
oDasS:
on8S:
Qapa7:
aDnEa:
opg9:
OD8B:
0oD8D:
ODBE:
0D90:
oD92:
ODT4:
OD76:
oD97 2
oD9B:
OD9A:
oD7D:=
OD%F =
ODAZ2:
ODAZ:
ODAS:
ODA7=
oDAT:
0DAAY

oo
L U4

SBRE85388880

=]
o

a5R82

83

8883

87

B2

A82

3

B5E8

12

12

11

11

11

11

ADC
sTA

LDY
JSR
LDX
8TX
LDA
LDY
JSR

SBC
TAX
LDY
LDA
STA

FLA
PHA

JSR
BER
JSR

ARG
TAY
SEC

TAX
LDA
8STA
LDA
sTA

PHA

JSR
BEQ
JSR
PLA

LDX
DEX
BNE

#$08
388
#$20
H#30F
%12CD
350
$B8A
#S$LO

$12CD
$70

491
#%80
$8C
#S0OF

$0D7F
$1187
s0DB2
$11B2

571

$90

¥$70
ac
#E0F
48D

S0D9F
21187
$0DAZ
$11B2

#3501
$0DAF
#SFF

S0DAT

ODAC: FO B1 BEG@ $OD2F
ODAE: EA NOP

ODAF: E& 90 INC s90
ODBi: AS 90 LDA €90
ODB3: C9 80 CMF #sB80
ODBS: DO OD BNE $O0DC4
0DB7: A9 10 LDA #$10
0DB9: 85 90 STA 90
ODBB: E& 91 INC 891
ODBD: AS 91 LDA $91
ODBF: C9 80 CMP #%80
ODCi: DO 01 BNE $0DC4
0DC3: 00 BRK

ODC4: 4C 2D 0D JMP $0D2D

Program 7.16 Example 1 (#D00-#DC8)

This program (7.16) assumes that BRK will return you to whatever machine code monitor you are
using. You should change thisto RTS (instruction code #60) if you are just using BASIC. Please note
that these routines assume that you are already in HIRES mode — if you are in a machine code routine,
call subroutine #£9BB (or V1.1 ROM #EC33) in order to enter HIRES. The call to get back into TEXT
mode is#E9A9 (#EC21 VI. 1 ROM). To run the program call #D00.

The colours for Example 1 are as follows:
F80:11112222
F90: 66663333

EXAMPLE 2—-USING THE NON-CHARACTER GRAPHICSROUTINES

2000: A9 40 LDA #$40
2002: 85 8C STA s8C
2004: A9 20 LDA #%20
2006: 85 8D STA $8D
2008: B85 81 STA 81
200A: A% 80 LDA #s$80
200C: 85 80 STA $80
200E: A9 05 LDA #s$05
2010: 8E STA $BE
12: A9 09 LDA #$09
14: B85 6F STA $8BF
16: A4 90 LDY %90
18: A6 91 LDX $91
1A: 20 CO 20 JSR $20C0
1D: AS 93 LDA $93

201F: FO OC BEG $202D
2021: E&6 90 INC 890
2023: AS 90 LDA %90
2025: C9 BO CMP #$BO
2027: DO D7 BNE $2000
2029: C&6 93 DEC %93
202B: FO D3 BEQ $2000
202D: C& 90 DEC $90
202F: AS 90 LDA $90
2031: C9 10 CMP #%10
2033: DO CB BNE $2000
2035: E&6 93 INC 93
2037: DO C7 BNE $2000
2039: 00 BREK

203A: EA NOP

20C0: BA TXA

20C1: 48 FPHA

20C2: 98 TYA

20C3: A48 PHA

20C4: AS 80 LDA %80
20C4&: 48 PHA

20CT: A5 81 LDA $81
20C7: 48 PHA

20CA: 20 F2 10 JSR %10F2
20CD: A0 10 LDY #$10
20CF: CA DEX

2000z DO FD BNE $20CF
20D2: 88 DEY

20D3: DO FA BNE $20CF
2005: &8 PLA

20D4: 85 B1 STA $81
20D8: &8 PLA

20D9: 83 BO STA $BO
20DB: &8 PLA

20DC: A8 TAY

20DD: &8 PLA

20DE: 2121 TAX

20DF: 20 SE 11 JSR $115E
20E2: &0 RTS

Program 7.17 Example 2 (02000 — #2039 and #20CO —#20E2)

This example (Program 7.17) demonstrates how easy it isto move any shape around, using the second
drawing method. The flickering is due to the constant drawing and clearing of the object. One way
round this would be to leave the object on the screen and not clear it off. Providing that your object has
been defined with at least one blank pixel on all sides, you will automatically wipe out the previous
creation when moving in any direction. Of course, thiswill clear anything that your object crosses, but
the graphics animation is smoother and twice as fast as before.

The shape for Example 2 in the area #2040 to #206C is as follows:

7.8 PAINT subroutines

| wonder if you thought that the FILL command would paint an area of the screen when you first
bought your Oric! Unfortunately there is no easy way to shade in anything more complicated than a
rectangle, so hereisthe highlight of the graphics routines, a super-fast PAINT subroutine.

THEORY

The paint facility here uses the 1K graphicstable, created by calling 1200, and the set and test dot
subroutines at 137E and 1398. However, so that the routine can be called from BASIC, the subroutine
has been designed to do all necessary calls, and saves all zero page locations that it overwrites.

The theory behind a PAINT subroutine assumes that the shape is completely enclosed and that a
starting point is supplied somewhere inside. The general approach is to move away from this starting
point, going in all directionsin turn. From each new point that is not yet filled, another set of directions
isremembered, and in this way the whole shape is eventually painted.

To ‘remember’ each point that needs painting, a stack is used, so that we explore all avenues until a
complete dead-end is reached and then back-track through all other possibilities — like you might do
when mapping a maze.

The problem with thisis that you have only a limited stack to use. In order for PAINT to work within
this constraint, it must constantly prune unwanted values off the stack. Even so, this PAINT routineis
probably the fastest you will ever see on the Oric.

Rather than try to explain in detail how the machine code routine works., Program 7.18 isaBASIC
equivalent to the PAINT subroutine listed below in Program 7.19.

5 REM BASIC VERSION DF PAINT

10 DIMA(100):5=100

15 INPUTX,Y

20 RF=0185=5-1:A(5)=255:5=6-1:A(S)=255: 607035

30 Y=A(S):5=5+1:X=A(S):5=6+1

35 IFX=255THEN END

40 IFRF=0THENUF=TRUE: DF =TRUE

45 T=S:R=T

446 IFA(R)=2SSTHENSO

47 IFA(R)=YANDA (R+1)=XTHENR=R-1: FORK=RTOTSTEP-1:A (K+2) =A(K) tNEXT: 8=
§+2: B0TOSO

48 R=R+2:BOT046

50 CURSETX,Y,1

&0 IFUFANDPOINT (X,Y¥—1)=0THENS=8—1:A(S)=X15=8-1:A (5} =Y~1

70 UF=POINT(X,Y-1)

80 IFDFANDPOINT (X, Y¥+1)=0THENS=S-1:1A(S)=X15=6-1:A(S)=Y+1

90 DF=POINT(X,Y+1)

100 RF=0: IFPOINT (X~1,Y¥)=0THENS=8-1: A (S)=X—11:6=5-1:A (S)=Y: RF=TRUE
120 IFPOINT (X+1,Y)=0THENS=S-1:A(S)=X+1:5=6-1:A(8)=Y:RF=TRUE

130 BOTO3O

Program 7.18 BASIC paint program

This program runs very slowly because, for every point plotted, the routine must look in the four
surrounding positions. Here is a summary of what is happening:

1. Theflag RF (right flag) is set to true whenever it is possible to move either left or right.

2. Theflags UF and DF (up and down flags) are set to the state of the pixels above and below the
current dot position. Before doing this, the subroutine looks for an empty pixel above or below, and
if the up or down flag is set as well, that position is put on the stack as a point to investigate. These
flags are used in order to stop the stack from being saturated with unnecessary values. Since all dots
along aline are investigated, it is not necessary to look at all the dots above and below, since any
one of them will scan its own horizontal brothers.

3. Aseach point is set, the stack is examined for any outstanding references to that point, and these are
removed.

Program 7.19 gives the listing of the machine code PAINT subroutine.

1000: 78 SEI

1001 A2 OF LDX #SOF
1003: BS 80 LDA $80,X
Program 7.19 (continues)

1005: 9D EZ 10 STA $10E2,X
1008: CA DEX

1009: 10 FB BPL %1003
100B: D8 CLD

100C: 20 00 12 JSR $1200
100F: A& 00 LDX $00
101i: A4 01 LDY $01
1013: A% 00 LDA #$00
1015: ac STA $8C
1017: A9 FF LDA #S$FF
1019: 48 PHA

101A: 48 PHA

101B: DO 04 BNE $1021
10iD: &8 PLA

101E: A8 TAY

101F: &8 FLA

1020: AA TAX

1021: EO FF CPX #SFF
1023: FO SF BEQ %1084
1025: AS BC LDA s8BC
1027: DO 0& BNE $102F
1029: A9 01 LDA #s01
102B: BS BD STA $8D
102D: BS BE STA $8E
102F: 20 A2 10 JSR S$10A2
1032: 88 DEY

1033: 20 98 10 JSR %1098
1034: B85 BF STA s8F
1038: DO OB BNE $1042
103A: AS 8D LDA s8D
103C: FO 04 BEQ %1042
103E: BA TXA

103F: 48 PHA

1040: 98 TYA

1041: 48 FHA

1042: AS LDA S$BF
1044: 85 STA $8D
1046: CB INY

1047: C8 INY

1048: 20 98 10 JSR #1098
104B: B85 BF STA $BF
104D: DO 08 BNE $1057
104F: A5 BE LDA $BE
1051: FO 04 BEQ $1057
1053: 84 XA

1054: 48 PHA

1055: 98 TYA

1054: 48 PHA

1057: AS BF LDA S$BF

10592
105B:
105C:
1035Ds
10608
1062:
1063s
106483
10451
1064:

10&6A:
10&Cs
10&E:
1070z
1071:
1072:
1075:
1077:
1078:
1079:
107A:
10783
107D:
107F:
1080:
1082:
1084:
1084:
1089:

PR PSRN R0 BRI3 R332 EB8EER3BA3E35388583

8888% 23

83

8R%38 A=

-
m

g8 38 BAHE

10

10

10

13

13

5TA
DEY
DEX
JSR

TXA

TYA

LDA
STA

8TA
INX
INX
JSR

TXA

TYA

SThA
DEX
LDA

LDX

sTA
DEX

CLI
RTS
STY
JSR
LDY
RTS
sSTY
JSR

LDY

RTS
STX
sSTY
TSX
STX
INX

#1098
$10&0C

#3501

$1070

s8c

$1098
$107F

#3%01
#%00
$101D

$10E2, |
$80, X

$10856

%80
$137E

%1398
$80
582
%82

SHF

10AA: EB INX
10AB: E8 INX

10AC: BD 00 01 LDA $0100,X
10AF: C9 FF CMP #$FF
10B1: FO 25 BER $10D8
10B3: CS5 83 CMFP $83
10BS: DO 1C BNE $10D3
10B7: BD 01 01 LDA $0101.X
10BA: CS 82 CMP $82
10BC: DO 15 BNE $10D3
10BE: CA DEX

10BF: E4 BF CPX $8F
10C1: FO 09 BER $10CC
10C3: BD 00 01 LDA $0100,X
10C6: 9D 02 01 STA $0102,X
10C9: 38 SEC

10CA: BO F2 BCS $10BE
10CC: E& BF INC $8F
10CE: E& BF INC $8F
10D0: 38 SEC

10Di: BO 05 BCS $10D8
10D3: E8 INX

10D4: EB8 INX

10D5: 38 SEC

10D6: BO D4 BCS $10AC
10D8: A& BF LDX $8F
10DA: 9A TXS

10DB: A& B2 LDX 82
10DD: A4 83 LDY s$83
10DF: 4C 90 10 JMP $1090

Program 7.19 PAINT subroutine (#1000~ #10E1)

USNG THE PAINT FACILITY
Theroutineis called at #1000 after setting X (at #0) and Y (at #1) to a point inside the shape.

It assumes that high-resolution mode has been selected, though of course thisis not of importance to
the program itself, since it is Simply processing an area of memory.

PAINT is great fun to watch!

7.9 High-resolution compactor subroutine

When displaying a high-resolution screen, you would normally need nearly 8K of RAM. This may
strike you as being wasteful, especially when most of the time you are just looking at blank or filled
areas. Below is aroutine that compacts a high-resolution screen (or any other data) into anything from
1K to 8K, according to the complexity of the picture. Y ou do not have to save the whole of the screen
in any case, s0 thisroutine can be used with the split-screen facility discussed in Chapter 6.

The compactor and the companion expander routine do not use any of the other subroutinesin this
chapter, so can be used on their own. One obvious use is the creation of front pages when loading a
program: instead of loading a complete 8K picture, you only need to load maybe 3 or 4K.

COMPACTOR CONSIDERATIONS

These routines make two assumptions:

1. The value #OF is not used. (It has no meaning in HIRES mode anyway.)

2. Most of the screen contains characters with an ASCII value between 0 and 127. The routine does
cope with the occasional ‘inverse’ byte, though with less efficiency than ‘normal’ characters.

USING THE COMPACTOR

You need to set up start and end addresses as follows:

1. The start address of the area to be condensed should be entered at #82, #388.

2. The end address of this area should be stored at #84, #85.

3. The start address of the resultant data must be stored at #86, #87.

After using the compactor subroutine, the highest address of the compacted data is | eft at #88, #89.

The compactor subroutineisintended for use within a machine code program. If you wish to useit
from BASIC you will have to save locations #80 to #3F in the same way as the PAINT routine does.

The expander routine, which reverses the compacting process, uses the same addresses, but does not
need the end address (#82) to be specified.

0C00: AS B2 LDA $82
0Co2: 48 PHA
OC03: AS B3 LDA %83

Program 7.20 (continues)

OCO0Sa
0C04:
OC08:
OC0A:
OCOoC:
OCOE:
OC10:
OoC12:
0C13:
OC15:
OC17:
OC19:
OC1B:z
OC1D:z
OC1E:
OC20:
0C22:
OC24:
0C256:
0oC28:
OC2Ax
0C2C:
OC2E:
OoC30:
OC3E2:
0oC3I4:
OC34:
ocC38:
OC3A:
0OC3B:
OC3C:
OC3E:
0OCA0:
0oC42:
0C43:
OCAS:
0oCca7:
0C48;
0C49:
OC4B:
OC4C:
OC4E:

0CS2:
OCS4:
OCS5:
OCS6:
oCS8:
oCSA:

R I A R R R E A R R A R R R A - k k k kk

~2B8B82RBABRRY BRERY R23I8F

2% B8E

o
L5

INBB

82
az
02

Ti1THT T

$3563
41

3

ne3eBRITEEREE

5TA

INC
CLC
TYA
ADC
STA

3888

8801
(s84),Y

:

(s84),Y

(882),Y

#S7F
(882),Y

sOC1D

(s88, X)
#8501
SOC4APB

#%80

(s88),Y

(s88),Y

HIN

ﬁﬁﬁ

OC3C: Eb& B3 INC =83
OCSE: MO BA LA sBA
OC&0: C% OF CHMP BSOF
oC&2: DO B3 BNE SOC17
OoC&H4: &8 FLA

OC&sS: A0 01 LDY #$01
OCaT: 71 B4 §TA (sB84),Y
OC4T: &B FLA

OChA: B3 B3 6TA w#83
OCAaC: &8 FLA

OoCaD: B85 a8z STA w82
OCAF: &0 RTS

Program 7.20 Compactor routine {#C00-#C8F)
Program 7.20 gives the compactor subroutine, which starts at #C00

Finally, Program 7.21 gives the expander routine, at #C75.

OC7S: AS 82 LDA $82
oc77: BS 84 STA %84
oC79: AS 83 LDA 83
oC7B: BS 835 STA %85
OC7D: AS B& LDA $8&
OC7F: 48 PHA

0CB0: AS 87 LDA $87
ocaz: 48 PHA

oc83: A0 00 LDY #800
oces: B1 86 LDA ($B8&),Y
0C87: 30 06 BMI SOCSF
oCce?: 91 84 STA ($B84),Y
ocEB: A9 01 LDA #301
oCBD: DO 15 BNE SOCA4
OCBF: 29 7F AND W®$7F
ocT1: AA TAX

ocyz: C8 INY

oc93: Bl 84 LDA ($8&),Y
oCT3: 48 FPHA

oC94: 8 TXA

oCY7 e ag TAY

oco8: &8 PLA

oCc99: 88 DEY

oC9A: 91 684 STA ($84),Y
oCc9Ci 88 DEY

Program 7.21 (continues)

oCTD: 10 FB BFL SOC9A
OC9F: BAa TEA

OCAOQ: AB TAY

OCAl: B8 DEY

OCAZ: A7 02 LDA #8002
OCA%: 18 CLC

OCAS: &3 88 ADC $B&
OCA7: 83 B& STA SB&
OCA9: T0 02 BCC sO0CAD
OCAB: E& 87 INC 87
OCAD: 3B SEC

OCAE: 98 TYA

OCAF: &5 B4 ADC %84
OCEBEl: 85 B4 STA sB4
OCB3: 990 02 BCC sOCB7
OCBS: E& B85 INC 85
OCB7: AD 00 LDY #$00
OoCB9: Bl Bb LDAa ($85),Y
OCBB: C9 OF CHP #30F
OCBD: DO Ca BNE $0C8S
OCBF: &8 PLA

QCCo: 83 a7 5Ta 87
OCCZ2: &8 PLA

OCC3: 85 8é6 STA %84
OCCS: &0 RTS

Program 7.21 Expander routine (#C75-#CCB)

7.10 Conclusions

It is not intended that you use all of these routines every time that you want to do some high-resolution
graphics —indeed the ROM routines may prove to be fast enough for your needs. It may well be,
though, that you require severa of the routines for a game involving fast-moving graphics, and these
could be relocated into a spare memory address using the relocater program in Chapter 3.

Even if you do not want to use the movement routines, the paint facility isinvauable in BASIC,
though once again you may need to relocate it to a higher addressif you have a 48K machine.

The use of tables to speed up graphics should be remembered for other applications where memory can
be sacrificed in return for a faster response.

The compactor routine can certainly be improved upon. It depends largely on the picture being stored,
but you may find it better to scan vertically rather than horizontally. A completely different approach
would be to analyse the screen in terms of pixels, keeping a count of the number of dots alternately set
or clear.

Additional note (August 1998)

A lot of water has passed under the bridge since this was written, 15 years of
programming, including much games programming on other machines has taught me
that some of the methods in this chapter aren't quite optimal. At the time, I
clearly had only a passing knowledge of TV's workings, i.e. raster and flybacks. I
don't think I would really use XOR these days, far better to restore previous
sprite, save background, draw sprite. Having said that, I still come across the
XOR trick, for instance in a C++ MFC book, which suggested its use for drawing
lines and boxes. As for the suggestion that multiplying by 40 is hard, well in fact
it's just a a few shifts and adds.

8 USEFUL UTILITIES

8.1 Introduction

This chapter presents six utilities to help you write programsin BASIC. Y ou may have seen other versions of
some of the routines (such as Delete and Renumber), but the routines here are generally shorter and faster.

The programs can be entered by using a machine code monitor (such as Tansoft's ORICMON program) or by
using asimple BASIC loader, as described in Chapter 3. Once the machine code is in memory, you should save
it on tape so that it can be loaded independently of any other program.

Chapter 3 contains arelocater routine should you need to move the programsto a different address.

Some of the programs are considerably dependent on the ROM, and often you will find two listings printed —
one per version of ROM. Where there are only a small number of differences, alisting is given for version 1.0,
with the changes that are required for version 1.1.

8.2 Renumber routine

Thisis quite alengthy program, occupying about 600 bytes. Its purpose is to resequence a BASIC program so
that the line numbers increase in even steps. Thisis very useful when you need to insert new linesinto a
program.

The utility islocated in the alternate character set area, between #B800 and #BA5C. Remember that pressing the
Reset button will wipe out the program!

To renumber your program you must first DOKE 0 with the starting line number and then DOKE 2 with the
increment. Finally, you should CALL #BA1E in order to start the process. For large programs, prepare to wait a
couple of minutes. For example, DOKE 0,10:DOKE 2,10:CALL#BA1E would renumber the program starting at
10, in steps of 10.

ALL GOTO, GOSUB, THEN, and EL SE statements are converted to fit in with the new steps.

Version 1.0 owners should note that the Renumber program can be loaded after the BASIC program to be
renumbered, since the #9C end-of-BASIC pointer is corrected.

HOW IT WORKS

Renumber is the most complicated program in this book. The theory is as follows:

1. Usethetwo link bytesto store the new line numbers. The old numbers must be kept for cross-reference
purposes.

2. Go through the program looking for ‘GOTO’, ‘GOSUB’, ‘THEN’, or ‘ELSE'.

3. When one of these tokensis found, ook up the line number that follows and replace it with the new line
number stored in the link field.

4. At the end of the program, recalculate the links.

CHANGES FOR VERSION 1.1
The ROM is called in eight places; however, for version 1.1 these addresses are different:

#BO4E: JSR DFE7 (input a number into ACC1 from ASCII)
#B951: JSR D92C (turn ACCL into an integer)

#B968: JSR D499 (turn integer into floating point)
#BA1A: JSR C55F (create program links)

#BA1E: JSR E76A (disableinterrupts)

#BA30: JSR E93D (enableinterrupts)

#BA44: JSR DB22 (add memory to ACC1)

#BA47: ISR EOD5 (convert ACClinto ASCII)

PROGRAM LISTING

The program (8.1) needs this short table: #BA58: #91, #00, #00, #00, #00.
This isthe floating-point representation of 65536 which is used to handle line numbers beyond 32767.

B800: A2 00 LDX #$00
BB02: A5 35 LDA $35
BBO4: 48 FHA

BBOS: AS 36 LDA %346
BBO7: 48 PHA

BBOB: A0 00 LDY #s$00
BBOA: Bl 35 LDA ($35),Y

BBOC:
BBOE:
B810:
BB12:
BB814:
BB15:
BB17:
BB19:
B81B:
B81D:
BB1F:
BBZ21:
Ba23:
BB2S5:
BB27:
B82%:
BB2B:
B82D:

BB&62:
BB&S:

CRERTGRNGEEBABRUREURIRER3VES

YBESHBESRABAGA Q8IS

383348

36

35

o1

28383

T

T

romr
25

:

SThA

SThA
LDX
LDA
STA
LDA

$BB17
$BB17

$BBOA
($35),Y
($35, X)
$9C

$35
$BB27
$9D

$36
$BB2F
35
$B82D
$36
$B817
$37

$9C
$37
s$7C
$9D
#%00
$9D

$36

#3500

$0101,Y
$B852

s$BE84A
$9C
$38
9D
$37
#5500
(%38, X)
($38),Y
38
$35
S$BB&C

BB&&:

BB9B:
B89D:
BEB%F:
B8A1:
BBA3:

BBAT:

0D
LT

R R EE R E T R R R R L FEL R

9

§ ¢

01
I8
39

39
El
S7

01
38

FB8

37
TC

2D
00
2D

01

o1
35
FF

32
02

35
D4
07

39
D3
i8
04
35
03

F9

01

LDA
CMFP
BEQ
SEC
LDA

STA

HE

STY

BMI
LDA
STA

BPL
CLC
LDA
ADC
STa

STA
RTS

LDA
8TA
LDA
STA
LDY
LDA

LDY
LDA
CMFP

INY
LDA
CMF
BER
LDY
LDA

INY
BNE
INY

$39
$36
$BB7E

38
#3501
$38
$37
#4500
$39
$BE85C
$37

sbBBag
$0101,Y
($38),Y

$BB80

$37
$9C
$9C
$9D
#$00
$9D

#$01
$35
#3805
$36
#301
($35),Y
#3$FF
$BBDY
#$02
($35),Y
$D4
$BEB&

($35),Y
$D3
$BBCE
#$04
($35),Y
$BBBF

sBEb8

BBE4:
BBE&L:
BBEB:
BBE9:
BBEB:
BBED:
BBEE:
BBFD:
BBF1:
BEBF3:
BBF3:
BBF &1
BBFB:
BBFA:
BBFC:
BBFE:
B900;
B902:
B903:

B906:
BR08:
B90OA:
B90OC:
B9OE:
BFOF
B?11:
B?13:
B915:

SRR Rl R A R F A A e EE R R R Rk R kL

L A
o

B2FER

=l
A

Na2ggHe R4

~@28R8 W8 & 4=

#3884 HABE &

TYA

ADC
STA

B LR HITHES

T

335388

T

1131

3

$35

835

$36
#%00
$36
S$BA9F
#5000

($35),Y

$D3

($35).,¥
sD4

#8301
$35
#3805
$35
#301
($35),Y
$B70A

01
($335),Y

($35),v¥

($35), Y

$01
$03
$01

$34
S$BBE2
#3FF
($35),Y

$3I5
#302
90
53Z46

B917:
B919:
BY1B:
BY1C:
B?1F:
B?20:
B9d1;:
B923:
B925:
B927:
B92%:
B72B:
BF2C:
B72D:
B92F:
B931:
B?33:
B935:
B?X7:
B939:
B93A:
B93C:
B93E:
B93F:
B940:
B941:
B942:
B943:
B745;
BE944:

B94%9:
B74A:
B94B:
BY74E:
B951:
B954:
B957:
BYSY:
B95B:
B9SD:
B95F:
BY62:
B9564:
BY44:
B96B8:
B946B:

EREE B R R R R R R R L R R R RN R R R F - R

7D

34

E9

£88

00
E9

o7
30
03

F3

EA

SRR
BER8

&
D3
D4
o7

o1
O/
D3
D4
ED

D3

STA
RTS
JSR
cLC
TYA
ADC
8STa

TAY

#$00
$7D

$BAZ4

$3A

$3IB
#$00
$SEA

#800
($E9), Y
#$3A
$B93C
#$30
$B93C

$B92F
($E9),Y

8 3

$00ES8
SDFCF
$D871
$B89&
$D3
sD4
$B9464
#300
$0101
$B7&6E
$D3
$D4
$D3ED
SBA3C

B970:
B971:
B973:
BY74:
B974:
B977:
B979:
B97B:
B?7D:
B97F:
B981:
B784:
B987:
B988:
B?89:
B98B:
B9BD:
B98F:
B991:
B993:
B994:
B994:
B998:
B99A:
B99C:
B99D:
B99E:
B99F:
B?A0:
B9A3:
B9AS:
B9AT:
BYA9:
B?AB:
B9AD:
BYAF:
B9B1:
B?B3:
BYBS:
B9B7:
B9B9:
B9BB:
B?BD:
B9BF:
P9C1:
B9C3:
B9CS:
B9C7:
B9CT:

ERSBRABRRERE

B8338328

e
ok

3333332833 BRI RTBETEE3T

nOSRBEIBIGEINAEREGEE

-
=]

883

RRE

F3
IA
2C
80

($34),Y
#53A
$B996
#$30
$B996

sB989
($3A),Y

$B91C

$B8DA
#301
$3A
#$05
$3B
#%01
($34),Y

#$FF
$B9DF
#304
($3A), Y
$B7D1
#$97
$BICT
#3C9
$B9CT
#sC8
$B9CY
#4598
$BYCE
$B91C

B9CC:
B9CE:
B9CF:
B9D1:
B9D2:
B9D3:
B9D4:
B9D&:
BYDE:
B9DA:
B9DC:
B9DD:
B9DF:
B9E1l:
BYE3:
B9ES:
BYET:
BYEF:
B9EB:
BYED:
B9EF:
B9F1:
B9F3:
B9FS:
B9F7:
B9F9:
B9FB:
B9F¥D:
BYFE:
BAOO:
BAOZ2:
BAO4 3
BAOL:
BAOT
BAOS:
BAGH:
BAOB:
BAOD:
BAOF &
BAll:
BA13:
BAl4:
BAls:
BAl1B:
BAlA:z
BA1D:
BPALE:
BAZlx
BAZ23:

EFEEEEL ERL R E R T LY

SASA8uBNAE2¥GaE2E

1

ah888238873R0h83883

E4

IR

3 auRa

#FRd4

38 fug=s

REIZRER

n
D

T

TLEL

rmEm
- o -
>

23

sSTA
JSR
RTS
JSR
LDA

SBYBS

$B9BS

$3A
$3A
$B9DC
$3B

$B7AB
#301
$35
#8035
$34
#301
($35),Y

$BAls

($35),Y
#%00
($35),Y
#$02
($35),Y
#301

(835),Y
#8504
($35),Y
$BA0Y

$BAD2

$35
$35
$BAl3
$36

SB9E7
#300
($35),Y

BA24: AS EA LDA SEA
BA26: 4B PHA

BR27: 20 9F BY JSR S$BY9F
BA2A: &8 PLA

BAZB: 85 EA STA $EA
BAZD: &8 PLA

BAZ2E: 85 E9 STA SE9
BAZ0: 20 04 EB JSR S$SEBO4
BAZ3: &0 RTS

BA34: CB INY

BA3S: Bl 3Aa LDA ($3A),Y
BA37: C9 20 CMP #%20
BA3Z9: FO F9 BEQ $BA34
BA3B: &0 RTS

BAZELC: aAS DS LDA SDS
BASE: 10 07 BPL $BA47
BA4O: AT 38 LDA #%58
BA42: AD BA LDY #3BA
BA44: 20 97 DA JSR SDAT7
BA47: 20 D1 EO JSR $EOD1
BAd4A: &0 RTS

8.3 Delete utility

It is often useful to be able to extract part of a program, but normally this would involve much typing in order to
remove the unwanted lines. Here is a short routine that will delete any given section of a program.

To run the program, DOKE 0 with the lowest line number and DOKE 2 with the highest line number. When you
are ready to delete part of the program, type CALL#420. For example, DOKEQ,100: DOKE2,200: CALL#420
would delete lines 100 to 200 (inclusive).

Owners of version 1.0 ROMs should load the DELETE program before loading the BASIC program that isto be
modified, otherwise the #9C end-of-BASIC pointer will be incorrect.

Version 1.1 ROM owners must make these three changes to the listed routine:
#429: JSR C6B9 (find address of a given line number)

#441: ISR C6B9

#462: JSR C55F (create program links)

HOW THE DELETE UTILITY WORKS
This program first finds the address of the earliest line to delete, storing it at 0,1.

Then it finds the address of the line following the section that is to be deleted. It isthen a simple matter to move
down the program, from the second address to the first. Finally, the program isre-linked, and the #9C end-of-
BASIC pointer corrected.

PROGRAM LISTING

Thisis givenin Program 8.2.

RN R R LR R E R

85

SHE8MIE2YUS

cCé

sTA
LDA
sTA
JSR

STA
LDA
STA
cLC
LDA

STA

STA
JSR
LDY
LDA
STA
INC

INC
INC

INC
LDaA

$33
$01
$34
$C6E4

$00
$CF
$01

$02
#%01
$33

$03
#$00
$34
$C&HES
#%00
($CE) , Y
(800),Y
$00
$0450
$01

$CE
$043556

0438: C5 9C CMFPF sS9C
045a: DO EA BNE $0446
045C: AS CF LDA SCF
OASE: C3S 9D CMFP $9D
0460: DO E& BNE $044646
0462: 20 &F CS JER SCS&F
0o4565: 18 cLC

0466: AS 91 LDA 291
04568: &9 02 ADC #s$02
046A: 85 9C STA S$9C
0456C: 85 9E STA $9E
O46E: AS 92 LDA $92
0470: &9 00 ADC #4300
0472: 85 9D STA $9D
0474: 85 9F STA $9F
0476: &O RTS

0477: EA NOP

Program 8.2 Delete

8.4 Merge program facility

Thisisan invaluable routine, often used in connection with the previous two subroutines when copying parts of
BASIC programs around.

This program is much more sophisticated than the ‘join’ facility of version 1.1 ROMSs, asit can interleave two
programs correctly and also replace duplicated lines.

To use Merge:

1. Load up the Merge machine code routine.
2. Load up the first BASIC program.

3. Typein CALL #BSAE.

4. Play back the tape containing the new section to be introduced. Any lines with the same line number will act
as replacements.

If the tape speed of the first BASIC program is different from the second, you will need to alter the tape-speed
flag. Thisiseither O fast) or 1 (dow) and is stored at #67 (version 1.0) or #24D (version 1.1).

The Merge routine will take a maximum of 3 minutesto complete, depending on the size of the first program.

There must be room in memory to store both the original program andthe program that is merged.

HOW MERGE WORKS

It isnot possible to insert linesinto a program directly as they arrive from tape — there is not enough time
between bytes. The method used here is to move the existing program up to the end of memory and then load in
the new lines asanormal program. Then the Merge routine can input each line of the program stored at the end
of memory into the correct place. When this process is finished, the #9C end-of-BASIC pointer is recal culated
and the program is re-linked.

PROGRAM LISTINGS

Because the tape handling routines are greatly different between the two ROM versions, there are two program
listings (Programs 8.3 and 8.4).

BB00: A9 05 LDA #$0S5
B802: B85 38 STA 3B
B804: A9 01 LDA #3201
BB0&: 85 37 STA €37
BB0B: A0 03 LDY #$03
B80OA: Bl 37 LDA ($37),Y
BBOC: CS 3&6 CMP $3&
BBOE: FO 24 BEQ $B834
B810: BO 2F BCS $BB4al
B81i2: A0 03 LDY #$03
BB8i4: C8B INY

B815: B1 37 LDA ($37),Y
BB17: DO FB BNE $BB814
B819: C8B INY

B81A: 98 TYA

B81B: 18 CLC

B81C: &5 37 ADC $37
BB1E: 835 37 STA $37
B820: 90 02 BCC $B824
B822: E&6 38 INC <38
B824: A0 00 LDY #$00
BB2&: B1 37 LDA ($37),Y
B828: DO DE BNE $BB0S8
BB2A: C8 INY

BB82B: B1 37 LDA ($37),Y
B82D: DO D9 BNE $BBOS
BB2F: 18 cLC

B830: &0 RTS

BA31: EA NOF

BB832: EA NOF

BE33: EA NDOP

BB&T7:
BB&9:
BB&B!:
BB&D:
BB&F :
B871:
BB872:
B873:
BB7S:
BE77:
BA79:
B87B:
B87D:
BB7E:
BB87F:
BBBO:
BB81:
BB83:

23800 2RSBRGC3BRIGATRESUGE

g%

37

04
D3

938

D

39
39
39

SEERY

39
01

$8%5%

El

283383

LDA
CMP

BCS
BCC
SEC
RTS
CcLC

:

:

1

87TA

23883

($37),Y
$35
$BB3F
$B841
$B812

#$00
$9C
$39
$9D

($39, X)
($39),Y
$39

$37
$BB&2
$3A

s38
$B871

#s01
$39
$3A
#%00
$3A
$B852

$9C
$9C
$9D
#300
$9D

($00), Y

BBAF :
B8B1:
BBB3:
B8BS5:
BBB7:
BBE9:
BB8BE:
B8BD:
BBEBF :
BBC1:
BBC2:
BBC4:
BBLCA:
BBCA:
BBCY:
BBCBH:
BBCD:
BBCF:
BBD1:
BBD3:

tonS83388883

Bl

10

18
&S
B85

&9

&0

EA
EA
EA

38
AS
E?
85
AS
E?

AR

AT
ES
85
48
A9

A9
8S

B1

F?

48

37

F9

R ER P Y,

35

B3
36
01

01
02
05
03

02

INY

INY
PLP
TYA

TA

T

b I e T /[-
383

338434

=
T

D

838

T

833

T

D

muurCcwomnr o
8 3

T

D

LDA

STA

LDA
STA
LDA
S5TA
LDY
LDA

$BBBA

$B883

$BB89D
$BB848

($00),Y
($37),Y

S$BB95

$00

$01
#8$00
$01

S9C
#$04
$35
$9D
#$05
$356
#SFF
$35

#%B3>
$346
$01

#$01
$02
#$05
$03
#$00
($02),Y

BBDS:
BBD7:
BBD9:
BBDB:
BBDD:
BBDF =
BEE1:
BBES:

BBE7:
BBEY:
BBEB:
BBED:
BBEF:
BBF1:
BBF2:
BBF3:
BBF 4:
BBFS:
BBF &3
BBF7:
BBFB:
BBFB:
BBFE:
B901:
B90O2:
B903:
B904:
BF05:
B70&:
BFOT7:
BT?08:
B?09:
BT0A:z
B9OLC:
B70D:
B90F:
BY11:
B912:
BT14:
B?17:
B718:
B71A:
B91B:
B?1D:
B?1F:
B921:

F8&T

P
(i |

c3GAEREREE

01
B4
10

02
o1
02
02z
03
00
E&
00
35

CA
AB
04

61

&2

9D
41

01

01

B4
17

E&
E4
E8

B9

57A
LDA

INC
BNE
INC
INC

INC
LDA

LDA
STA
NOF
NOF
NOF

NOP

5TA
JSR

5TaA
FLA
STA
LDA

($00),Y
$01
#$B4
$BBED
$00
$BEE3
$01

$SBBEY
$03
#$00
$BBD=
#%$00
$3I5

SELCA
SE4AB
$EBO4

%61

$7C
$62

$7D
$B741

$00
01
#5B4
$B734A

B923: EA

B924: EA
B92S: A0 02 LDY #$02
B927: B1 00 LDA ($00),Y
B29: 85 35 STA 35
B92B: CB INY
B92C: B1 00 LDA ($00),Y
B92E: B85 36 STA $3&

B930: 20 00 BB JSR $BB0O
B¥33: 20 B0 BB JSR $BBBO
B93&6: AT 00 LDA #%00
B938: FO EZ BEQ $B91D
B?3A: 20 &F CS JSR $CO&F
B93D: 20 FA FA JSR $FAFA

B7940: &0 RTS

B741: 3B SEC

B?42: AS 7C LDA =9C
B?44: E9 02 SBC #%02
B9446: 85 02 STA $02
B?48: AS 9D LDA $9D
E?4A: ET 00 SBC #$00
B?4C: 85 03 STA %03
BR4E: A0 OO0 LDY #$00
B950: AT 00 LDA #$00
B952: 91 02 STA ($02),Y
B754: C8 INY

B?55: 91 02 STA (s02).Y
B?57: &O RTS

B958: EA NOF

B959: EA NOF

B9SA: EA NOF

B?5B: EA NOF

B95C: EA NOF

B95D: EA NOP

Program 8.3 Merge (version 1.0 ROMs)

BB0OO:
B802:
BBO4&;
BBO&L:
B808:
BBOA:
BBOC:
BBOE:
B810:
BB12:
B814:
B815:
BB17:
BB19:

BZ2EB3B3G23R383

288

37
03
37

24

37
FB

#$05
$38
#4801
$37

($37),Y
$346
$BE34
$BB41
#303

($37),Y
$BB14

BB1A:
B81B:
B81C:
BB1E:
BB20:;
BB22:
BB24:
BB2&:
B828:

B82B:
B82D:
BB2F:
BB3X0:
BB31:
Ba32:
BB33:
B834;
BB8XS:
BB37:
BB39:
BE3B:
BB3D:

B840;
B841:
BB842:
B843:
BBA4:
BB45S:
B844:
BB47:
BG48:
BB4A:
BBA4C:
BBAE:

BBS2:
BES4:

BB5E::
BB&O:
BBA2:
BE8A&T:
BB&65:
BB&T:

EEED

BARBARBURI2RERAERET

328 SESRYS

aRfHy RU8ERYY

$39838

39
39

3

$37

$37

$B824

$38
#$00
($37),Y
$B808

($37),Y
$B808

($37),Y
$35
$B83F
$B841
$B812

#$00
$9C
$39
$9D
$3A
($39, X)
($39),Y
$39

$B842

$38
$B871

#301
$39

B88C:
BBB8D:

BE92:
EB93:
BB894:
BB9S:
BB97:
BE99:
BE7A:
BB9C:
B8%D:
BBIE:
BBAD:
BBAZ2:
EBEBA4:
BBA&:
BBAB:
BBAF:
BBAA:
BBAB:
B8BAC:
B8AD:

BBAF:
BBB1:
BBB3:

AS
E?

18
&S

AS
&%

60

2388338883 2BRET

88
Bl

10
&8
18
&35

AS
&9

EEBER

EA
EA
38
AS
E?

~58%

5834838

48

37

Fe

00
00
01
00
01

2C

35

STA

$3A
#$00
$3A
$B852

$9C
$9C
$9D
#3%00
$9D

#$04
($00),Y
$BB88A

$BB883

$B89D
$B848

($00),¥Y
($37),Y

$BB9S

$00
$00
$01
#$00
$01

$7C
#3049
$35

AL

R358C03833884808

R ET LN ERE REL R

85

B1
71

cCe
FO
Eé

E&
Eé6

E&
A9
FO
AT
8D

8D

20
20
20
20
20
AD

AD
a5

&8

G888

SF8 8hLA¥KEGS

S8&&RKR=

=
=]

01

& 0
- 2

o
[

01

o2
02
02
E7
ES
E4
ES
E4
E9
02

02

B?

LD#A
SBC
S7aA

5TA

LDA
SBC
STA

LDA
5TA
LDA
STA
LDY
LDA
5TA
LDA
CMP

INC

INC
INC

INC
LDA

LDA
STA
sTaA
SThA
JSR
JSR
JSR
JSR
JSR
JSR
DA
STA
LDA
STA
JSR
FLA
STa
FLA
STA
LDA

9D
#$05
$356
#SFF
$35
$00

#$B3
$34
$01

#$01
$02
#3805
$03
#$00
($02) ,Y
($00),Y
$01
#$B4
$BBED

S$BBES
$01
$02
$BBEY

#5500
$BEBD3
#$00
$027F
$025B
$025A
SE7&A
$ES7D
$E4AC
$ESTB
$E4EO
SEF3ID
$02AB
$9C
$02AC
7D
$B741

$01

$00
301

B91F:
B921:
B923:
B924:
B925:
BY27:
B929:
B92B:
B92C:
BY2E:
B?30:
B933:
B936&:
B93I8:
B93A:
B93D:
B940:
B?41:
B742:
B944;
B94&:
B748:
B94A:
B94C:
B74E:
B930:
B9352:
B954:
B955:
B957:
B758:
B9S59:
B9SA;:
BY3B:

SRIBATHES

088G83RRNS

AT
71
ce
71
&0
EA
EA
EA
EA

17

2M0888F8 HER

02

88

CS
FB

3583

LDY

sSTA
INY
LDA
STA
JSR
JSR
LDA
BEQ
JSR
JSR
RTS

LDA
SBC
STA
LDA
SBC
STA
LDY

sTA
INY
STA
RTS
NOP
NOP
NOF
NOP

#sB4
S$B73A

#$02
($00),Y
$35

($00),Y
$34
$BB00
$B880
#%00
$B91D

$FBl14

$9C
#$02
$02

$5D
#$00
$03
#$00
#3800
($02),Y

($02),Y

Program 8.4 Merge (version 1.1 ROMs)

8.5 AUTO DATA feature

This utility is designed to save time when typing long programs. As it stands, the program types the next line
number (in sequence) followed by the command ‘DATA’, every time that you press RETURN.

This can be easily changed to any other automatic command — such as PRINT — or just the line number alone.

On version 1.0, remember to load the machine code program before you load the BASIC program, or the end-of-

BASIC pointer will beincorrectly set up.

To start the AUTO feature, CALL #4A1. To stop the AUTO temporarily (to do an immediate command, such as
CSAVE), you can use CONTROL-X. To turn off AUTO, you need to do two DOKE commands in immediate
mode: For version 1.0 ROMs, do: DOKE #229,#EC03:POKE #230,64. For version 1.1 ROMs, do: DOKE

#245,#EE22:POKE #24A.,64.

Before you call the routine, you must DOKE 0 with the starting line number and DOKE 2 with the line
increment.

This routine can only handle line numbers up to 32767. You will also find that the first digit of the line number
will belost whenever the 'READY’ message appears.

HOW AUTO DATA WORKS

Theroutineis called every time that an interrupt occurs (normally 100 times per second) before the keyboard is
scanned. When the last key pressed was RETURN, the AUTO routine feeds in the next line number and the
word ‘DATA’ (not asatoken!). To the system, it is as if these keys have been pressed. Y ou will notice a small
delay is made between the end of one line and the start of the next. This is done because problems arose when
characters were sent at full speed and the line was corrupted as it was stored in memory.

Itisat #453 that the word ‘DATA’ ismoved into atemporary buffer, but this can be altered or removed if
required.

If you change location #454 to #0, the subroutine will only generate aline number.

PROGRAM LISTINGS

There are two program listings, one for each ROM version (Programs 8.5 and 8.6).

0410: OB PHF

0O411: 48 PHA

0412: BA TXA

0413: 48 PHA

0414: 98 TYA

0415: A48 FHA

0416: AD DF 02 LDA $O02DF
0419: 30 OE BMI %0429
041B: AD 00 04 LDA $0400
041E: C9 88 CMF #$88

0420: FO 57 BER $0479
0422: C9 66 CHMF #3466

0424: DO 03 BNE $0429

0426: A4C BB 04 JMF $04BB

0429;
0428z
042B:
042C:
042D:
O42E:
O42F =
0o432:
0434;:
084371
0439:
043C:
0O43E:
O440:
0443;
0444z
0448:
044B:
044Dz
0450z
0451:
04535z
0455:
0458:
D45A:
045Dz
0450:
0452:
044652
044573
0456A:
045683
046D:
D446F 2
0471:
0473:
0475z
Q47 r:
0478z
0479
047C:
O47Ft

04822
0484:

0489
048B:
O48E:
0490z

GR838358GBERE

20
20
AQ
B9
FO

ca8

AT

3338338

888888

AT
o9
18
AS
65
85
AS
&5
a5
EA
EA
AC
EE
B9

FO

8D
FO

0z

01
01
00
01
ED

RREER

FS
44
02
41

02

01
03
Q1

o1
o1

4885838

EC

04

D3
EO

01

04

04

02

04

TAX

STA
INY

5TA
LDA
STA
STA
LDA
STA
LDA
STA

LDA

S$ECO3
#%B88
$0400
#$01
$0401
%00

%01
$D3ED
$E0D1
#300
%0100, Y
$0453
$0402,Y

$0448
#3544
$0402, Y
#3541
$0403, Y
$0405, Y
#354
$0404,Y
#$00
$0406, Y

%00
$02
$00
%01
$03
$01

$0401
$0401
$0402,Y

$048B
#%$80

$O2DF
$0429
$0400
%0429

0810z
0411z
0412z
0413z
0414;:
0415:
04162
0419z
of1B:
041E:
D420z
04222
0a424:
oa2ée
0429
O42A:
042B:
042C:
042D:

EREREABRI3EEEEAREER

AA8MEYE3E3E20383835800838383

=

SEFYBERST

SLELE

EEGER

KRE3E3

o2

02

02

o2

02

04

OF 04

OF
03
32
29

04

o4
o4

PHA
LDA
CHMP

LDA
SThA

RTI
LD#A
8ThA

5TA
LD#A
SThA
LDA
STA
LDA
STA
RTS
LDA
AND
STh
DEC
BNE
JMP
JMF

#$8D
$047E

$0400

#$4C
$0230
#$70
$0231
#%04
$0232
#%10
$0229
#3504
$022/

$040F
#5501

$040F
$040F
$04CB
$0432
$0429

AUTO DATA utility (version 1.0 ROMs)

£ B

33

=
k-]

TEE

BHMI
LW

113

#0429
$0400

SO4T7

$0429
$O4BE

Program 8.8 (contintes)

O42E:
O42F:
0432z
0434:
0837
043%9:
043C:
O43E:
0440:
044X
D445;
04481
044B:
044Dz
0450:
0451
0453:
0455:
0458:
045A:
045D :
04601
04&2:
CasS:
04&7:
Of&A:
0446B:
046D:
O04&F:
0471:
0473:
0475:
04771
0478:
0479
oq7C:
O/7F:

0482:
0484:
04846:
0489:
048PD:
O4BE :
04%0¢
0491 :
04922
04951
04972
0499

2838338388333 88H2838338

18

56383
$ERREY

FO
o8

283%8&
FRER

RE88FI282288N

a

o1
01
02

o4

D4
EO

01

04

04

04

04

04

04
04
04

02

04

JMP

STA
LDA
STA
LDY

JSR
JSR
LDY
LDA
BE@
STA
INY

LDA
STA
LDA
sSTA
STa
LDA
STA
LDA
sTA
cLC

22835853588

-
D

Fi
D 2

sSTA
BEQ

853

11

SEE22
#sB88
$0400
#8301
$0401
$00

$01
D499
SEODS
#$00
$0100,Y
$0453
$0402,Y

80448
#4434
$0402,Y
#441
$0403,Y
$0405,Y
#4549
$0404,Y
#%00
$0406, Y

$00
$02
$0C
01
03
101

%0401
$0401
$0402,Y

+048B
#3860

S02DF
$0429
$0400
$0429

$02DF
#48D
$049E

o49B: 8D 00 04 STA 0800
O49E: &8 FLA

049F: 28 PLP

04/0: 40 RTI

Od4al: AT 4C LDA #&%4C

04Aa3: 8D 4A 02 STA =024A
o446 AT TF0 LDA #%90

Q4pB: 8D 4B 02 STA ®024B
o4AB: AT 04 LDAa #s04

Oo4AaD: BD 4C 02 STA $024C
04B0O: AT 10 LDA #$10

04B2: 8D 45 02 STA 0245
04BS: AT 04 LDA #%04

04B7: 8D 46 02 STA %0244
04BA: &OD RTS

04BB: AD OF 04 LDA S040F
O4BE: 29 01 AND #s0l

04aC0: 8D OF 04 STA S040F
04C3: CE OF 04 DEC SO040F
04Cs5: DO O3 BNE SO0ACE
04C8: 4C 32 04 JHMP 80432
O4CB: 4C 29 04 JMP $042%

Program 8.8 AUTO DATA utility (version 1.1 ROMs)
8.6 Trace utility

This program helps aBASIC program to be debugged by constantly displaying the current line number asthe
program runs.

This s often useful in determining what exactly a program is doing. If a program should crash, or go into atight
loop, then this will be immediately noticeable.

USING THE PROGRAM

The Trace program should be loaded from tape first, followed by the program to be traced. On version 1.0 this
order isimportant since the end-of-BASIC pointer (#9C) must reflect the end of the BASIC program.

To start the trace, type CALL #495 — avery large number should appear in the top left corner. When you run
your BASIC program, this number will change to show the line number currently being executed.

HOW IT WORKS

The program is called by the dow interrupt vector, but only updates the line number when it changes. Locations
#A8, #A9 contain the current line number in integer form, so this must be converted to decimal and displayed.
This could be done with ROM subroutines, but you must remember that we are in the middle of an interrupt call;
it isimportant not to disturb any page 0 and page 2 locations that might be in use.

In the Trace program, we use a standard binary-to-decimal technique which involves the subtraction of the
powers of 10.

The Trace program demonstrates how it is possible for the Oric to do two tasks at the sametime. The
demonstration program for the Oric Atmos uses interrupts in order to play music while the main BASIC program
runs. Chapter 9 shows how it is possible to run two BASIC programs concurrently — again using interrupts.

PROGRAM LISTING
First of all, thereisatable of 11 bytes at #4A1:

#AA1: #10, #27, #E8, #03, #64, #00, #OA, #00, #4C, #22, #04

This table contains the binary value for each power of 10. At the end of the table is the jJump that overwritesthe
page 2 dow interrupt vector. Owners of version 1.1 ROMs should DOKE #49B with #24A because of the
different interrupt patch address.

The program listing is given in Program 8.7.

0422:
0423:
0424:
0425:
042646:
0427:
0428:
0429:
042B:
042D:
042F:
0431:
0433:
0435:
0437:
0439:
043B:
043D:
0O43F:
0442z
0444:
0446:
0448:

LR FENE RN R R Y-

28EB8303IRRBA3IRRB

Ga858

01

04

LDA

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA

$AB
$02
$043D
$A9
$03
$048F
$AB
$02
$A9
$03
#$00
$0420
$A8
$00

$01

Od444:
044C:
O84E:
0450:
0451
0454 :
O8456:
0458:
0459
045
O45E :
04560:
o451z
0/52:
0a463:
0465:
O486b6:
04568:
04&B:
04&D:
D446E:
0470;:
08735:
0474&:
0879
O47C:
O&7F:
0480:
0481+
0483:
0485:
0487 :
0489:
04BC:
O48F :
0490:;
0o491:
08924
0493%:
0494
0495:
Q497
049A:
049D0:
D49E:
O4A0:
O4A/1:
04A2:
04835:

AQ
A2
AS

Fo

cs
F9
0
85
E8

38
BO
88
AS
79
85
A
09
8E
AE
9D
EE
AE
ca
c8
cCo

AS

AE
9D
&8
AB

PBDESBITB2ERE

00
00
00
Al
01

Al
o7

02

AT
30

F7

04

04

04

04
04

04
o4

BB

04
02

#$00
#$00
$00

$04A1,Y
$00
$01

$04A1,Y
$04465
301

$044E

$00
$04A1,Y

#$30
$0421
$0420
$BBB8O, X
$0420
$0421

#s508
$044LC
$00
#$30
$0420

$BB80, X

#$02
$04A49,Y
$0230,Y

$0497

8.7 On-error GOTO feature

When a BASIC program stops, it always returns to command mode. This can be undesirable, especially on the
production version of a complicated program, where obscure bugs may still be lurking. Also, it is often anice
touch to detect control-C, and not just crash the machine, but instead jump back into the program.

This short utility traps any attempt to return to command mode and forces the computer to re-enter the program
at line 500, without loss of variables.

Be warned that using this routine can be alittle annoying to yourself, especially when you find yoursalf stuck in
your own program!

HOW IT WORKS

When BASIC finishes a program, or a command, it prints ‘Ready’. Thisis not done directly, but instead through
a jump command at #1A to # C. This means that the jump can be modified for our own purposes. Often the
address at #1B is changed so that the machine simply jumps to the start-up routine — wiping everything out. If
you want to do thisincidentally, type DOKE #1B,DEEK (#FFFC).

Here we change the vector to jump to #B81DO (the program can be easily relocated to another address if you
wish), so you must DOKE #1B, #B1DO.

The routine does exactly what would have normally happened; then we force * GOTO500" into BASIC' sinput
buffer, as though it had been typed, which persuades the machine to re-enter the program. The GOTO500 can
easily he changed to any other command. Note that when the program isre-entered, all GOSUBs have
effectively been POPped, so RETURN will produce an error message — and unless you are very careful, you will
end up with unceasing display of that error message, since there is now a fault in the error handler!

HOW TO USE THE PROGRAM

Version 1.1 owners will need to change #B1F0 to IMP #C4BD. The on-error feature is switched on by DOKE
#1B, #B1D0 and off by either DOKE #1B,#CBED (version 1.0) or DOKE #1B,#CCBO (version 1.1). You can
quite easily change the line number that is jumped to by altering #B81D8 to #B1E3.

Note that should a BASIC error occur, you will still get the error message printed before the program continues.
This is one occasion where control-S can be used in order to inhibit the printing of error messages. The screen
will still scroll if the cursor is within the bottom four lines, regardless of control-S.

PROGRAM LISTING

B1DO: &B PLA

BiD1: 4E F1 02 LSR SO02F1
B1D4: A% 97 LDA #8997
BiD&: B35 35 STA $35
BiD8: A9 35 LDA %835
BiDA: B85 36 STA %36
B1DC: A9 30 LDA #$30
B1DE: 835 37 STA %37
B1EO: A% 30 LDA #%$30
B1E2: B85 38 STA €38
Bl1E4: A2 04 LDX #$04
Bl1E&: AO0 00 LDY #$00
Bl1EB: 84 39 STY $39
Bl1EA: AZ 34 LDX #$34
B1EC: A% 13 LDA #$13
B1EE: 85 30 8§TAa $30

B1FO: A4C CD C4 JMP $CA4CD
Program 8.8 Omn-error GOTO facility

9. STRETCHING THE ORIC TO ITS LIMITS

9.1 Introduction

This chapter presents a few ideas that are more interesting than practical. It is hoped that these
last few programs will encourage further experimentation — perhaps to improve the methods
used.

9.2 Speech synthesis program
The first thing to be said here isthat you should not expect too much of this program!

Speech synthesis is normally done with the help of a special add-on piece of hardware. The
two programs below show that a limited form of speech synthesis is possible on an
unexpanded Oric. The speech produced is frequently unintelligible, requires about 2K per
second of speech, but can add a touch of magic to adull program.

The program here fills up about 15K of memory in around 7 to 10 seconds (depending on the
content of the message).

USING THE PROGRAM
There are two very short programs (it isjust the data that is bulky!).

The first reads from the cassette port and produces a stream of data in memory. The second
reverses the process, but puts out the speech through the loudspeaker via the sound chip.

The best way to create a message (at least when you first experiment) isto set up the cassette
recorder so that as you record, the signa goes directly to the Oric. On many cassette
recorders, this is done by disconnecting the recording jack, so that the internal microphone is
used, but leaving in the earphone jack. If your cassette recorder cannot do this, or has afive-
pin connector, you will have to record the message on the cassette recorder and then play it
back.

For best results speak loudly, clearly, Slowly, and very near to the microphone. If you are
recording on to tape, play your voice back at avery high volume. You will find that music
will not come out in arecognizable form, although pure tones (such as whistling) come out
clearly, but much faster.

If you have difficulties at first, try different levels of playback, and above al remember to
speak S-L-O-W-L- Y!
Words containing the letters T, S, and D will sound better than letterssuch asP, L, and R.

To record amessage, type CALL #420 once all the connections have been made, and start
talking immediately! After about 10 seconds of constant speech the program should return to
you. If not, then something has gone wrong — the Reset button should get you out of trouble.

When you are ready to hear the Oric’'s interpretation of your message, type in:
PLAY 1,0,0,0:SOUND1,1,1:CALL #480.
Prepare to be disappointed for the first few attempts!

THE THEORY BEHIND THE PROGRAM
The first program at #420 works as follows:

. Interrupts are disabled — we need full use of the machine and the cassette also needs to be
used.

2. Locations 2,3 are used to point to the next address where data is stored.
3. At #42D, the cassette input bit is cleared by reading from port B.

4. When #30D contains #52, then one bit has been received from the cassette input port;
otherwise counter X isincreased — measuring the gaps between input bits.

5. When a bit isreceived, or the counter reaches 255, the value of the counter is stored at the
next address as pointed to by (2,3)

6. When the pointer at (2,3) reaches #3400, interrupts are enabled again and the program
returnsto BASIC.

Obviousdly, you can change the lower and upper limits of the data areato suit your needs.
Once the data has been input, you can edit it — for example, to remove any delay at the front
of the message. The data can then be stored on tape, or incorporated into alarger program.

The second program has to work in reverse of the first, turning the series of countsinto a
series of clicks. Providing that these clicks are separated by the same time interval as the gaps
between each bit in the original signal, you should get an approximation of the speech. The
main problem encountered when devel oping the idea was that the ROM subroutine which
writes to the 8912 sound chip isincredibly inefficient. From #4AD to #4C6 you will find a
considerably faster routine to write value X into register A.

The second program alternates between sending a volume of 7 and a volume of 13 to channel
A. The SOUND 1,1,1 command will have set up afrequency that is beyond both human
hearing and the capabilities of the loudspeaker, so the basic sound signal does not show up
during pauses.

Here is how the program at #480 functions:
1. Disables interrupts to get the maximum use of the machine.
2. Sets up the pointer (2,3) to the start of the data area

3. Delays depending on the next byte of data. The NOP instructions act as a fine tune to get
the best results. Two-millionths of a second can make all the difference to this program!

4. Setsthe volume to either 7 or 13, and writes thisto register 8 of the 8912 chip.
5. When the pointer (2,3) reaches #3400, enables interrupts and returns to BASIC.

CHANGES FOR VERSION 1.1 ROMS

Four changes are required if you own aversion 1.1 ROM:
#420 JSR #E76A
#451 JSR #E93D
#480 JSR #E76A
#4D2 JSR #E93D

PROGRAM LISTINGS
There aretwo — Programs 9.1 and 9.2

0420: 20 CA E& JSER SE&CA

0423: A9 00 LDA #$00
0425: 835 02 STA $02
0427: A9 06 LDA #3046
042%9: 835 03 STA $03
042B: AO 00 LDY #$00
042D: AD 00 03 LDA $0300
0430: A2 00 LDX #$00
0432: A9 52 LDA #$52
0434: CD OD 03 CMP $030D
0437: FO 05 BEQ $O043E
0439: EB INX

043A: DO FB BNE $0434

043C: A2 FF LDX #SFF

043E: BA TXA

043F: 91 02 STA ($02),Y
0441: A2 01 LDX #$01
0443: CA DEX

0444: DO FD BNE $0443
0446: C8B INY

0447: DO E4 BNE $042D
044%9: E& 03 INC $03
044B: AS 03 LDA $03
044D: C9 34 CMP #%$34
044F: DO DC BNE $042D
0451: 20 04 EB JSR $EB04
0454: &0 RTS

Program 9.1 Speech input (#420-#454)

Program 9.2 follows.

0480:
0483:
0485:
0487:
0489:
048B:
048D:
048F:
0490:
0491:
0492:
0493:
o494:
0495:
Q497
0499z
049B:
049C:
049E:
O4A0:
04A2:
04A4:
04ak:
04A8:
O4AA:
04AB:
O4AD:
04BO:
04B2:
04B5:
04B7:

04BA:
04BD:=
O4BF :
04C2:
Q4C4:
04CT:
04C8:
C4CA:
04CC:
04CE:
04D0:
04D2:
04D5:
04Db6:

20
AT
85
A7
BS
A
B1i
AA
CA
EA
EA
EA
Cca
Do
ce
BO
EA
AS
(0
DO
A9
DO
A
B5
AR
AT
8D
A9
8D
29
BD

8E
o9
8D
29
8D
cs8
DO
E&
AS
ce
DO
20
&0
EA

CA Eb&6
00
o2
06
0z
oo
02

FD
FF
2C

04
07
04
oD
02
07
04

o8
OF 03
FE
ocC 03
DD
oC 03

OF 03
20
oC 03
DD
oC 03

c3
03
03
34
BB
04 EB

JSR
LDA
STA
LDA

$E&CA
#$00
$02
#$06

sSTA $03
LDY #%00

LDA
TAX
DEX
NOP
NOP
NOF
DEX
BNE
CHMP
BCS
NOF
LDA
CMP
ENE
L.DA
BNE
LDA
sSTA
TAX
LDA
S5TA
LDA
sTA
AND
STA

STX
ORA
STA

STA
INY
BNE
INC
LDA
CMP
BNE
J5R
RTS
NDF

($02),Y

$0474
#SFF
$04C7

$04
HE07
S04A5
#%0D
$04A8
#$07
$04

#3508
$030F
#SFE
$030C
#$DD
$030C

$030F
#%$20
$030C
#$DD
$030C

$048D
$03
$03
#5324
$048D
$EBOS

9.3 Extra 6502 op-codes

Out of the 256 possible instruction codes, about 100 would appear to be unused. However, if
you try to execute any of these, one of three things can happen:

1. The machine crashes.
2. Theinstruction acts like aNOP, and alters nothing.
3. Theinstruction obeys a combination of instructions.

The first of these is very puzzling — it appears that the 6502 itself halts, refusing to obey any
more commands until it isreset (not by the NMI button underneath the Oric). These
instructions, which we might give the mnemonic KILL, have instruction codes ending in #2 —
e.g., #22 —except for the valid instruction #A2.

The second category is not very important, except that, in doing nothing, the instructions are
still useful in protecting a program from being understood! A disassembler program will
usually be unable to cope with any unknown instructions and will often be misled into passing
over red instructions in your program!

Just asredl instructions can take 1, 2, or 3 bytes, so can our new ‘NOP’ instructions:
One-byte NOP instructions. #1A, #3A, #5A, #7A, #DA, #EA, #FA.

Two-byte NOP instructions. #64, #74, #D4, #F4.

Three-byte NOP instructions: #0C, #1C, #3C, #5C, #7C, #9C, #DC, #FC.

The third category are the most interesting instructions — hybrid op-codes. Some instructions
on the 6502 do two operations at once. These are instruction codes ending in #3, #7, and #F.
Y ou may find that instructions ending in #B also do a combination of things, but not to any
fixed pattern.

What happens to these instructions is that they execute two instructions in quick succession.
For op-codes ending in 3, combine that op-code with an ending of 6, followed by the same
op-code with an ending of 1. For example, #23 is#26 and #21, or:

ROL NN
AND (NN, X)
Thisisnot aparticularly useful combination, yet interesting nonethel ess.

Similarly, op-codesthat end in 7 are combinations of 6 and 5. For instance, #27 is #26, #25,
or:

ROL NN
AND NN

Finally, op-codes that end in 4F are combinations of #E and #D. So #2F is the same as #2E
and #2D, or:

ROL NNNN
AND NNNN

IMPORTANT NOTE

There is no guarantee that the hidden op-codes act in the same way on al 6502
microprocessors. It isfairly likely that all Oric machines behave in the same way, but it is still
arisky businessto rely upon any undocumented instruction.

9.4 Multitasking in BASIC

Fundamentally, a computer such as the Oric can only execute one instruction at atime. Thisis
done at such a speed that a computer can appear to run two or more programs concurrently.

This happens on the Oric every hundredth of a second, in order to handle interrupts, and the
impression is given that two things are happening at once — the cursor flashing on and off is
an example.

As some of the programs in this book have shown, it is quite possible to use interruptsto run a
small machine code program as a background task. It is more of a problem to be able to cope
with two BASIC programs running simultaneously, and such is the purpose of the routine in
this section.

149

THEORY

The major problem with switching between two BASIC programs is that they need their own
versions of page 0, stack, and page 2 memory. Since copying 1500 bytes of datais atime-
consuming task, even for machine code, we can only afford to interchange the running of the
two programs about every twelfth of a second. Any less than that and we would be spending
too little time on the actual programs; any more and the interchange would become more
noticeable.

The program uses #8100 to #83FF to store the first three pages of the BASIC program 1 and
#3400 to #86FF for BASIC program 2.

The multitasking is called by the slow interrupt vector, i.e., every hundredth of a second. If
the counter at #87FF is not either O or 8, the routine simply returns; otherwise it switches from
its current place in the program to the other position, moving about al the important locations
that BASIC uses. Instead of having two different BASIC programs which are swapped in and
out, this utility works by alowing one BASIC program to have two independent sections
running. All BASIC statements will work —including CALL.

USING THE PROGRAM

A specid part of the routine starts the procedure, by setting the counter at #87FF to 255. This
givesthe ‘first’ program a chance to split off into adifferent section. It will be about two
seconds before the machine will switch to the ‘second’ program. The BASIC program
example will demonstrate this (Program 9.3).

1 REM EXAMPLE OF SPLIT PROGRAM

= CLS:KK=0

10 DOKESB7AF, #B877F: DOKENZIL, #B7AE: POKENZI0, 74
20 REM SFLIT DFF FIRST PROGRAM

23 FORX=1TOFFtNEXT

30 IFKK=0THENKK=1: GOTO&000

35 REM PROGRAM B GETS TO HERE

40 FORI=1TO20000:PLOTLO, 10,8TR$(Z)
a0 NEXT

5999 REM PROGRAM A GETS HERE

&000 FORX=1r020000:PLOT20, 20,5TRS (X)
6005 ZAFIFORT=1TO100sNEXT

&H010 NEXT

Program 8.3 BABIC example of multi-tasking

Firstly, #87AF is DOK Ed with #877F — this makes the very first interrupt go to the special
routine at #877F, instead of the normal address at #8700.

Then the slow interrupt patch is entered — at #231 for version 1.0 (as listed) or at #24B for
version 1.1 — please use the appropriate address. Finaly, location #230 (version 1.0) or #24A
(version 1.1) is POKEd with 76.

Once this last instruction is complete and the first interrupt occurs (which will happen some
time during the FOR... NEXT loop), the current BASIC circumstances are saved as the
starting point for program 2.

Program 1 will then continue until 247 interrupts have passed, and has ample time to switch to
line 6000, preventing the second program from following.

When the second program does get to line 30, it will find KK equal to 1, and will drop
through to line 40.

PROGRAMMING LIMITATIONS

Since only the first three pages of memory are being switched, both the BASIC program and
its variables are being shared between the programs. Once the program has separated into two
paths, you will get into trouble if you try to set up variables in each section since they keep
their own account of the end of variables, strings, etc. It isa good ideato have one section
creating the variables and the other only using variables set up before the multitasking began.

Although you can have alot of fun experimenting with this idea (try pressing control-C!),
there are many pitfalls, and its practical use may be limited.

Note that the machine code areas ought to be protected by a HIMEM #80FF command.

To stop the programs multi-tasking, cancel one of the programs (the other will carry on while
you are typing!) and enter either POKE #230,64 (for version 1.0) or POKE #24A,64 (for

version 1.1).

PROGRAM LISTING

8700: 78 SEI
8701: 48 PHA
8702: 8A TXA
8703: 48 PHA
B704: 98 TYA

8705: 48 PHA

AD
FO
ce

SERAES

BD
7D
BD

8885

gD
BD
7D
CA

23R8

FO
BA
BE
AZ
BS
9D
BD
9D
BD
9D
BD
95
BD
9D
BD
9D
CA
DO
AE
9A
AT
8D
CE
&8
AB

DB
FC

00
34

FC

o0
o0
o0
oo
o0
o0
00
00
00
00
o0
00

DB
FB

10
FF
FF

a7

81
01
a2
02
83
84

85
01
8&
02

B7

87

84
01
85
02
B&
B1

82
01
B3
02

a7

a7
87

S87FF
$8742
#%08

$8774&

$97FB

#$00

$00, X

$8100, X
$0100, X
$8200, X
$0200, X
$8300, X
$8400, X
$00, X

$8500, X
$0100, X
$8L00, X
$0200, X

$87135
$8B7FC

#$00
$87756

$87FC

#$00

$00, X

$8400, X
$0100, X
$8500, X
$0200, X
$8600, X
$8100, X
%00, X

$8200, X
$0100, X
$8300, X
$0200, X

8748
$87FB

#+10
$87FF
$87FF

877B: 68 PLA

B77C: AA TAX
g877D: &8 PLA

877E: 40 RTI

g877F: 48 PHA

8780: BA TXA

g781: 48 PHA

g782: 98 TYA

g8783: 48 PHA

B784: A9 FF LDA #SFF

B784: 8D FF 87 STA S$87FF
g8789: A9 00 LDA #%00

g78B: 8D AF 87 STA $874F
B78E: A2 00 LDX #s$00

g8790: BS 00 LDA $00,X

g8792: 9D 00 84 STA $8400,X
8795: BD 00 01 LDA $0100,X
g798: 9D 00 85 STA $8500,X
g79B: BD 00 02 LDA $0200,X
g79E: 9D 00 B6 STA $8600, X

azal: CA DEX
87a2: DO EC BNE $8790
g7Aa4: BA TSX
87A5: B8E FC 87 STX $B87FC
87aB: &8 PLA
g7a%: A8 TAY
87a0: &8 PLA
87AB: AA TAX
87AC: &B PLA
g7aD: 40 RTI
‘g7aE: 4C 00 87 JMP $8700
B7B1: EA NOP
B7B2: EA NOP
g87B3: EA NOP
g7B4: EA NDP

Program 9.4 Multi-tasking routine

9.5 Single-key facility

Since the first appearance of cheap computers, there have evolved two methods of entering
programs.

The first Sinclair computers up to the ZX Spectrum use a single-key system, in which every
key, when combined with different shifts, generates a complete BASIC word. For example,
pressing ‘R’ could result in ‘RANDOMIZE’ appearing.

On the Oric, and almost al of the more expensive computers, each command must be entered
letter by letter. The reason for thisisthat BASIC is not necessarily the only language
available, and the BASIC commands would be meaninglessto FORTH, Assembler, etc.

The program in this section gives the capability of single-key command entry. Although
intended for use with BASIC, you could quite easily change the table of commands to work
with other languages.

USING THE PROGRAM

The program occupies the first two pages of the alternate character set, and so will only be
dislodged by a HIRES command, or the Reset button.

To run the program, type CALL #B894.
Owners of version 1.1 ROMs should also change #B89A to #49, instead of #2F.

While the single-key program is running, you can carry on typing commands in full by
switching to lower case (use control- T). Lower case will be turned into upper case when
commands are entered, and lower case only is applied when quotes are used. Thisin itself isa
useful tool when entering alot of PRINT or DATA statements.

When a capital letter is entered outside of quotes, acommand isinserted. For example, ‘N’
might produce the word ‘NEXT’. These commands are generated from atable at #8900. This
table contains the ASCII codes required for each character between #40 and #5A. Each ASCII
string must be terminated by #00. Thiswill be clarified if you examine the table of single-key
commands, Table 9.1.

Table 9.1

BR0OO: 40 Q0 41 53 43 28 00 43
B?08: 53 41 S5& 45 00 4% 4C 4F
B?10: 41 44 Q0 44 41 54 41 OO0
B?718: 45 4C 53 45 00 446 4F 52
B920: 00 47 4F 54 4F OO0 48 49
B728: 52 45 53 00 49 4E 50 35
B?I0: 54 00 47 4F 533 55 42 00¢
B?3B: 4B 45 59 24 00 4C 49 53
B?40: 54 OO0 4D 55 53 49 43 00
B?48B: 4E 45 58 54 00 50 45 45
BERS0: 4B OO0 50 4C 41 59 00 43
B?58: 48 52 24 28 00 52 435 54
B960: 55 52 4E 00 33 54 32 24
B?68: 2B 00 54 4F 00 55 4E 54
BE?70: 49 4C 00 56 41 4C 2B 00
B?7B: 57 41 49 54 00 45 58 50
BETBD: 4C 4F 44 A5 o0 52 45 30
B7EB: 45 41 54 00 5A 41 50 00O

The single-key facility can be stopped by changing either #230 (version 1.0) or #24A (version
1.1) to 64, using the POKE statement.

HOW IT WORKS

The program patches into the ever-popular slow interrupt vector so that it can alter any
keypress found in #2DF.

If alower-case letter is entered and no quote has been found, it is converted to upper case with
asimple AND #DF instruction. If it is upper case, then the appropriate word is located in the
table, and that word is fed out to #2DF, character by character, as part of the interrupt routine.
A similar technique was used by the AUTO DATA program of Chapter 8.

PROGRAM LISTING
The program occupies #B800 to #B8AA but could be easily relocated (Program 9.5).

B800D: 78 SEI

B801: 4B PHA

Ba02: 98 TYA

B803: 48 PHA

BBO4: BA TXA

Ba05: 48 PHA

BBO&: AS 00 LDA %00
Bg0B: FO 19 BER $BB23
BBOA: AD DF 02 LDA $02DF
BBOD: DO 73 BNE $BBB2
BBOF: A4 00 LDY %00
BBli: BT 00 BY LDA S$BY00,Y
BB14: FO 09 BER $BBIF
BB1&: 09 BO ORA #$BO
BB18: 8D DF 02 STA $02DF
BB1B: E& 00 INC $00
B81D: DO 5B BNE $BB7A
BB1F: 835 00 STA S$00
B821: FO SF BER sBgs2
B823: AD DF 02 LDA SO2DF
B824: FO S5A BER s$BBB2
Ba2B: 29 TF AND #%7F
BB2A: C9 22 CHF #3522
BE2C: DO OF ENE $BB3D
BBZE: AD FF B8 LDA &BBFF
BB31: DO OS5 BNE $B838

B833: EE FF BB INC $B8FF
BB34&: DO 42 BNE <$B87A

Pu8339038Y388EYEBERIR

Al
A2

28833

DO
EB

88EBEBhE28358888

FF
3D
FF

2LEEY:

oA
41
o7
=B
05

Ci
iB
DB
17
iF

00

00

80
DF
DF
8D
05
Qo
FF

03

BB

02

02

02
02

DEC

:

LDX

RERTA3R

0
3

M

3838

T

W 0w
33

C

35

BCS

STA
LDA
CMP
BENE
LDA
STA
FLA
TAX

TaY
PLA
RTI
LDY

SBBFF
$BA7A
$BBFF
sB87A
#3561
SBBAE
#37B
sBB4E
#5DF
$EBSA
#%41
$BESB
#3858
$BESB
#3580
$02DF
#sC1
$BB7A
#5DB
$BB7A
#%1F

#$00
$BE74

$BF00, X
$BB&C

s$BB&LC

$00
SBBOF

#5880
S02DF
$02DF
#$80D
$BEBE
#300
SBEFF

#5803

BB7&: BY A7 BB LDA $BBA7,Y
BE99: 99 2F 02 STA $022F,Y

BBFC: 8B DEY

BB7D: DO F7 BNE $BB75
BE?F: 8C FF B8 85TY SBBFF
BEBAZ: A9 2B LDA #3%2B
BBad4: BD OF O3 STA $0307
BBAT: &O RTS

BBAB: 4C 00 BS JMFP $BBOO
BBAEB: EA NDP

BBAC: EA NOP

BBAD: EA NOP

BBAE: EA NOP

Program 9.5 Single-key utility

9.6 Silence routine
The last program in this book can be used to shut up even the noisiest program!

It works by altering the slow interrupt vector so that every hundredth of a second al sound
channels are disabled.

The routine will work for most programs, failing in cases where the interrupts are tampered
with. Most sound commands (including the keyclick) will generate a very soft click, although
some sound effects (such as PING and EXPLODE) will present part of their noise before
being silenced.

USING THE PROGRAM
Version 1.1 ROM owners should change the address at #42E to #F590, instead of #F535.
Load up the silence routine first, and type

DOK E#231,#420:POK E#230,76 for version 1.0 ROMs or DOK E#24B . #420: POK E#24A,76
for version 1.1 ROMs

The silence routine should now be in service —try typing ZAP — and you can now load in the
program to be silenced.

The silence routine can be finished by typing POKE #230,64 for version 1.0 ROMs or POKE
#24A,64 for version 1.1 ROMs.

PROGRAM LISTING
Thisisgiven in Program 9.6.

0420: 4B FHA

0421: BA TXA

0422: 48 FHA

04235: 98 TYA

0424: 4B PHA

0425: AD OF 02 LDA $020F
0428: 48 FHA

0429: A2 3F LDX #33F
042B: A9 07 LDA #$07
042D: 20 35 FS JSR $F3535
Cc430: &8 FLA

0431: 8D OF 02 STA $020F
0434: &B PLA

0435: AB TAY

0434: &B PLA

0437: AA TAX

0438: &8 PLA

043%: 40 RTI

Afterthoughts (August 1998)

Hehe, this chapter shows its age doesn’'t it. 1I’m afraid my ignorance of some of the basic concepts of digital
audio in 1983 show up here, the proper way of playing back sound effectsis of course to use analogue to digital,
store the data, and then the fun begins when we try to playback. Thereisaway on thisrather limited sound chip
(when compared with today’ s luxurious sound blasters) to playback PCM data (i.e. wave files), whichisto use
the volume controls on the three channels to simulate the wave' s amplitude - you' d probably need a ‘ scope to do
this properly.

I think my explanation of the extra op-codes is probably inaccurate, it isnot so much that two instructions are
executed, rather that the logic inside the ALU of the 6502 decodes the instruction, and the logic simply has the
effect of following a combination of instructions.

| wonder if any of the emulators for 6502 based machines work in the same way...

I like my bias against ZX Spectrums in this chapter, heh, | did go on to program the Spectrums of this world, but
| have to confess to having used an Amstrad CPC to do all the programming, | just couldn’t stand that wretched
keyboard.

